• Title/Summary/Keyword: 휨철근

Search Result 859, Processing Time 0.023 seconds

A Study on the Spalling Properties of Polymer Modified Cement Mortar Using Polypropylene Fiber (폴리프로필렌 섬유를 혼입한 폴리머 시멘트 모르타르의 폭렬특성에 관한 연구)

  • Kim, Min-Sung;Sim, Sang-Rak;Ryu, Dong-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.20 no.4
    • /
    • pp.305-311
    • /
    • 2020
  • Polymer modified cement mortar (PCM) can improve the performance of adhesion strength, flexural strength, chemical resistance, etc., compared with cement mortar, and is widely used when repairing RC structures. However, PCM causes a burst in an environment with high temperature and fire rate, which causes problems in the stability of the structure. In this study, for the purpose of developing explosive reduction PCM, the polymer mixing ratio is 2%, 4%, 6%, the fiber length is 6mm, 12mm, 6+12mm, and the PP fiber mixing rate is 0.05 Vol% and 0.1 Vol%. Furnace heating experiment (600℃, 800℃) was carried out. As a result of comparative analysis of the explosive properties, it was confirmed that the explosive reduction effect due to the fiber incorporation was insufficient when the polymer mixing amount was 6% or more.

Improvement of Structural Performance of RC Beams retrofitted Hybrid Fiber using Recycled Coarse Aggregate and Ground Granulated Blast Furnace Slag (순환굵은골재 및 고로슬래그 미분말을 사용한 하이브리드섬유보강 철근콘크리트 보의 구조성능 개선)

  • Yi, Dong-Ryul;Ha, Gee-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.6
    • /
    • pp.1-10
    • /
    • 2014
  • In this study, thirteen reinforced concrete beams, ground granulated blast furnace slag, replacing recycled coarse aggregate with PVA fiber (BSPG series) and recycled coarse aggregate with hybrid fiber ($BSPGR_1$, $BSPGR_2$ series), and standard specimen (BSS) were constructed and tested under monotonic loading. Experimental programs were carried out to improve and evaluate the Structural performance of such test specimens, such as the load-displacement, the failure mode, and the maximum load carrying capacity. All the specimens were modeled in 1/2 scale-down size. Test results showed that test specimens ($BSPGR_1$, $BSPGR_2$ series) was increased the compressive strength by 13%, the maximum load carrying capacity by 4~21% and the ductility capacity by 4~28% in comparison with the standard specimen (BSS). And the specimens ($BSPGR_1$, $BSPGR_2$ series) showed enough ductile behavior and stable flexural failure.

Flexural Adhesive Performance of RC Beams Strengthened by Carbon Fiber Sheets (탄소섬유쉬트로 보강된 RC보의 휨 부착성능)

  • 유영찬;최기선;최근도;김긍환;이한승
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.4
    • /
    • pp.549-555
    • /
    • 2002
  • Tensile strength of CFRP (Carbon Fiber Reinforced Polymer) is approximately 10 times higher than that of the steel reinforcement, but the design strength of CFRP is normally limited by unpredictable bond failure between RC and CFRP. Many researches concerned with bond behavior between RC and CFRP have been carried out to prevent the bond failure of RC beam strengthened by CFRP, but the national design code for design bond strength of CFRP has not been constructed. In this study, three beam specimens strengthened by CFRP under the parameters of bonded length were tested to derive the design bond strength of CFRP for the RC flexural members. Each bonded length was calculated based on the bond strength of JCI and CFRP manufacturing company. Also, another two beam specimens strengthened by CFRP were tested to inspect the construction environment effects such as mixing error of epoxy resin, and the amount of epoxy primer. From the test results, it is concluded that the maximum design bond strength of CFRP to RC flexural member is considered to be $\tau$a =8 kgf/㎠.

Anchorage efficiency of mold-type anchorage for CFRP plates (CFRP판 긴장재를 위한 부착형 정착장치의 정착성능)

  • Park, Jong-Sup;Park, Young-Hwan;Jung, Woo-Tai
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.169-172
    • /
    • 2008
  • Carbon fiber reinforced polymer (CFRP) laminates can be used more efficiently in strengthening applications by applying prestress to the CFRP laminates. A key problem for prestressing with CFRP laminates is anchoring the laminates. These may include fracture to the CFRP laminates due to excessive gripping force or slippage of the CFRP laminates out of the anchorage zone caused by low friction between the anchor device and the lamiantes. The main objective of this study is the development of an applicative mold-type anchorage system for prestressed CFRP laminates through experimental study. The experimental parameters were the type of anchorage detail and the effect of surface treatment. The test results showed that the developed anchor assures 100% CFRP laminate strength.

  • PDF

Experimental study of composite beams consisting structural laminated timber beam with concrete slab (구조용집성재보와 콘크리트슬래브로 구성된 합성보의 실험적 연구)

  • An, Hyun-Jin;Kim, Soon-Chu;Moon, Youn-Joon;Yang, Il-Seung
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.233-236
    • /
    • 2008
  • In the traditional way floors has been constructed there are no shear connectors between the concrete slab and timber joists. In this study, an existing floor system os improved by simply providing normal bolts or lag screw so that the composite action can be achieved. It is evident that the key elements in the composite beam are the shear connectors. The selection of these connectors was based on their shear capacity. The experimental study carried out in this research investigated the flexural behavior of composite beams. The experimental studies of composite beams showed that the ultimated load capacity of the proposed composite beam(LS-S10 specimen) is 1.29 times as high as the noncomposite one. Finally, it can be concluded that LS-S10 specimen consisting structural laminated timber beam and concrete slab can be significantly improved by providing appropriate shear connectors.

  • PDF

Construction Application of a Newly Developed Form-Latticed Prefabricated Steel Reinforced Concrete Column (Form-LPSRC 기둥 개발 및 적용 연구)

  • Baek, Hojin;Lee, Seung-Hwan;Kim, Sooyoung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.5
    • /
    • pp.487-495
    • /
    • 2014
  • Shortening the construction duration of structural frame work is extremely important because the work accounts for a major percentage of all cost and duration in large projects. For this reason, new construction methods to reduce the duration of structural frame work are being continuously studied and developed. A PSRC composite column, which uses steel angles instead of H-beams, has the advantages of flexural strength and ductility. Moreover, with this PSRC technique, conventional work for reinforcing bars in columns in practice can be skipped. However, one limitation exists in which the form work is still required. This research proposes a Form-LPSRC column method that is prefabricated with the column frame that includes permanent forms attached. Feasibility was examined with mock-up specimens and finally, the technique applied to real practice. Compared to the conventional SRC column method, this study demonstrated that the proposed technique has many advantages in construction duration, cost, quality, safety and environment.

Effect of Bond Action of Longitudinal Bars on Shear Transfer Mechanism in RC Beams (RC 보에서의 전단저항기구와 주철근의 부착 작용과의 관계)

  • Kim Kil-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.4 s.88
    • /
    • pp.513-520
    • /
    • 2005
  • The uniform truss mechanism is widely accepted as a shear transfer mechanism in reinforced concrete members. However, the uniform truss action cannot be expected when the bond stress distribution is not constant along longitudinal bars. A test method in which only the truss action takes place is developed and conducted to investigate the truss actions under various bond contributions. Based on the experimental results and analysis, the following findings can be obtained: 1) The bond stress distribution depends on the axial compression force, the amount of shear reinforcement and loading conditions. 2) The analysis using the combined truss model consisting of uniform and fan-shape trusses can predict the experimental results

Analysis of the Reinforced I section UHPCC (Ulrea High Performance Cementitous Composites) beam without stirrup (전단철근이 없는 I형 휨보강 UHPCC 보의 거동해석)

  • Kim Sung Wook;Han Sang Muk;Kang Su Tae;Kong Jeong Shick;Kang Jun Hyung;Jun Sang Eun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.409-412
    • /
    • 2004
  • Over last decade extensive researches have been undertaken on the strength behaviour of Fiber Reinforced Concrete(FRC) structures. But the use of Ultra-High Strength Steel Fiber Cementitious Concrete Composites is in its infancy and there is a few experiments, analysis method and design criteria on the structural elements constructed with this new generation material which compressive strength is over 150 MPa and characteristic behaviour on the failure status is ductile. The objective of this paper is to investigate and analyze the behaviour of reinforced rectangular structural members constructed with ultra high performance cementitious composites (UHPCC). This material is known as reactive powder concrete (RPC) mixed with domestic materials and its compressive strength is over 150MP. The variables of test specimens were shear span ratio, reinforcement ratio and fiber quantity. Even if there were no shear stirrups in test specimens, most influential variable to determine the failure mode between shear and flexural action was proved to be shear span ratio. The characteristics of ultra high-strength concrete is basically brittle, but due to the steel fiber reinforcement behaviour of this structure member became ductile after the peak load. As a result of the test, the stress block of compressive zone could be defined. The proposed analytical calculation of internal force capacity based by plastic analysis gave a good prediction for the shear and flexural strength of specimens. The numerical verification of the finite element model which constitutive law developed for Mode I fracture of fiber reinforced concrete correctly captured the overall behaviour of the specimens tested.

  • PDF

An Experimental Study of Perfobond FRP-Concrete Composite Beam (퍼포본드 FRP-콘크리트 합성보의 실험적 연구)

  • Yoo, Seung-Woon;Kook, Moo-Sung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.2
    • /
    • pp.121-127
    • /
    • 2010
  • An experimental study of composite beam with perforated fiber reinforced polymer(FRP) plank as a permanent formwork and the tensile reinforcement was performed. A combined formwork and reinforcement system can facilitate rapid construction of concrete members since no conventional formwork is needed, which requires time consuming assembly and dismantling. In order for a smooth FRP plank to act compositely with the concrete, the surface of the FRP needs to be treated to increase its bond properties. Aggregates were bonded to the FRP plank using a commercially available epoxy and perforated web of plank. No additional flexural or shear reinforcement was provided in the beams. For comparison, two control specimens were tested. One control had no perforated hole in the web of FRP plank and the other had internal steel reinforcing bars instead of the FRP plank. The beams were loaded by central patch load to their ultimate capacity. This study demonstrates that the perforated FRP plank has the potential to serve as a permanent formwork and reinforcing for concrete beam.

Shear Performance on SFRC Beam Using Recycled Coarse Aggregate (순환골재를 사용한 SFRC 보의 전단성능)

  • Kim, Seongeun;Jeong, Jaewon;Kim, Seunghun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.189-196
    • /
    • 2018
  • Degraded shear performance of reinforced concrete members with recycled coarse aggregate (RCA) compared to flexural strength is a problem. To address this, steel fibers can be used as concrete reinforcement material. In this study, the strength and deformation characteristics of SFRC beams using RCA were to be determined by shear tests. Major experimental variables include the volume fraction of steel fiber (0, 0.5%, 1%), the replacement rate of RCA (0%, 100%), and the shear span ratio (a/d = 1, 2). As a result of the experiment, the shear strength of the specimen increased as the rate of mixing steel fiber increased. For specimens with RCA and 1% steel fiber, the maximum shear strengths increased by 1.77 - 6.25% compared to specimens with normal coarse aggregate (NCA). On the other hand, at 0-0.5% steel fiber, the shear strengths of RCA specimens were reduced by 24.2% to 49.2% compared to NCA specimens. This indicates that reinforcement with 1% volume fraction of steel fiber greatly contributes to preventing shear strength reduction due to the use of RCA.