• Title/Summary/Keyword: 휨철근

Search Result 859, Processing Time 0.021 seconds

Experimental Study about Flexural Strengthening Effects According to evelopment Method of Carbon Fiber Sheet for Reinforced Concrete Beam (탄소섬유시트의 단부정착방법에 따른 철근콘크리트보의 휨 보강 효과에 대한 실험적 연구)

  • Won, Chi-Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • This paper presents the results of a test program for flexural strengthening characteristics of continuous unidirectional carbon-fiber sheets bonded or/and developed to reinforced concrete (RC) beams. A total of six $150mm{\times}250mm{\times}2000mm$ concrete beams were tested. Various sheet development locations were studied to determine their effects on the ultimate flexural strength of the beams. From the test, it was found that the strength increases remarkably with the development of sheets at shear bar. Among the various location, multi-developed sheet provided the most effective strengthening for concrete beam. Beam strengthened using this scheme showed 53% increase in flexural capacity as compared to the control beam without any strengthening.

Experimental Investigation of the Flexural Behavior of Lightweight Aggregate Concrete Beams (경량 콘크리트 보의 휨 거동에 관한 실험적 연구)

  • Byon, Eun-Hyuk;Cho, Jang-Se;Lee, Young-Hak;Kim, Hee-Cheul
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.441-444
    • /
    • 2010
  • 대공간 구조물과 초고층 빌딩에 있어 건축물의 자중 감소에 대한 요구가 늘어나고 있으며 이에 대한 가장 효과적인 방법 중 하나는 경량 콘크리트를 사용하는 것이다. 본 연구는 최외단 철근의 순인장 변형률에 따른 경량콘크리트 보의 휨 거동 및 휨 성능을 평가하는 것에 그 목적이 있다. 크기와 형상이 동일한 보통중량 콘크리트 보 1개와 경량 콘크리트 보 4개의 총 5개 시험체를 제작하여 최외단 철근의 순인장 변형률을 변수로 실험을 수행하였으며 이를 통해 순인장 변형률에 따른 경량콘크리트 보의 강도와 연성의 변화를 분석하였다. 실험 결과 최외단 철근의 순인장 변형률이 증가할수록 시험체의 연성비는 증가하였으며 최대하중과 강성은 감소하였다. 특히 순인장 변형률 0.005 이상에서 연성지수 2 이상을 확보할 수 있었다.

  • PDF

Shear Deterioration of Reinforced Concrete Beams Failing in Shear after Flexural Yielding (휨항복 후 전단 파괴하는 철근콘크리트 보의 전단성능 저하에 관한 연구)

  • 이정윤
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.5
    • /
    • pp.466-475
    • /
    • 2001
  • The potential shear strength of reinforced concrete beams decreases after flexural yielding due to the decrease of the effective compressive strength of concrete in plastic hinge zone. A truss model considering shear deterioration in the plastic hinge zone was proposed in order to evaluate the ductile capacity of reinforced concrete beams failing in shear after flexural yielding This model can determine the potential shear strength of the beam by using a truss model. The potential shear strength gradually decreases as the increase of the axial strain of member. When the calculated potential shear strength decreases up to the flexural yielding strength, the corresponding rotation angle is defined as the ductile capacity of the beam. The predicted ductile capacity of reinforced concrete beams is shown to be in a good agreement with experimental results.

Seismic-performance Experiments of Circular Shear Piers Considering Effects of Rebar Corrosion, Lap splice and Axial Load (철근부식, 겹침이음 및 축하중의 영향을 고려한 원형 전단 교각의 내진성능실험)

  • Lee, Soo-Hyung;Lee, Seung-Geon;Lee, Hyerin;Hong, Kee-Jeung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.6
    • /
    • pp.143-153
    • /
    • 2021
  • The corroded pier that has corrosion of the tranverse steel, main steel and lapsplice directly affects the seismic performance. The corrosion of the tranvese and main steel directly reduce the shear strength and bendig strength. If steel corrosion occurs in lap splice, the flexural strength and flexibility of existing corroded pier that are not seismic design are significantly reduced. In addition, as the axial force acting on the pier increase the shear strength. Considering these effects. In this stuydy, we cosidered steel corrosion, lap splice and axial force, for a reasonable evaluation of seismic-performance. It is confirmed that flexular failure occurs at pies where shear failure is expected to occur due to corrosion of reinforcement. These failure modes and their reason are analyzed, and necessary considerations are presented for seismic reinforcement.

Flexural Behavior of Large-Diameter Composite PHC pile Using In-Filled Concrete and Reinforcement (속채움 콘크리트와 철근으로 보강된 대구경 합성 PHC말뚝의 휨성능 평가)

  • Bang, Jin-Wook;Park, Chan-Kyu;Yang, Seong-Yeong;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.5
    • /
    • pp.109-115
    • /
    • 2016
  • A demand of high bearing capacity of piles to resist heavy static loads has been increased. For this reason, the utilization of large diameter PHC piles including a range from 700 mm to 1,200 mm have been increased and applied to the construction sites in Korea recently. In this study, in order to increase the flexural strength capacity of the PHC pile, the large diameter composite PHC pile reinforced by in-filled concrete and reinforcement was developed and manufactured. All the specimens were tested under four-point bending setup and displacement control. From the strain behavior of transverse bar, it was found that the presence of transverse bar was effective against crack propagation and controlling crack width as well as prevented the web shear cracks. The flexural strength and mid-span deflection of LICPT specimens were increased by a maximum of 1.08 times and 1.19 times compared to the LICP specimens. This results indicated that the installed transverse bar is in an advantageous ductility performance of the PHC piles. A conventional layered sectional analysis for the pile specimens was performed to investigate the flexural strength according to the each used material. The calculated bending moment of conventional PHC pile and composite PHC pile, which was determined by P-M interaction curve, showed a safety factor 1.13 and 1.16 compared to the test results.

Experimental Investigations on the Flexural Behavior Using PE-Coated Rebars (PE 도막철근의 휨거동에 대한 실험적 연구)

  • Kim, Young-Jin;Kang, Young-Jong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.143-150
    • /
    • 2003
  • Recently, The corrosions of reinforced concrete structures are severe problems of economical social effects. PE-coated bars protecting from corrosion and enhancing durability of reinforced concrete structures are testified to evaluate structural properties. Tests are verified by comparative bending tests of the three type materials of epoxy coating, without coating and pe-coating. Load-deflection relations ate superior in pe-coated bar than any other materials(bare bar and epoxy bar). These are proved bonding properties enhancement by using cement powder.

Flexural Analysis of Reinforced Concrete Members Strengthened with FRP Systems Based on Strength Method (FRP 시스템으로 보강한 철근콘크리트 부재의 휨 해석)

  • Cho, Baik-Soon;Kim, Seong-Do;Cheung, Jin-Hwan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.2
    • /
    • pp.175-186
    • /
    • 2006
  • Strength method for determining nominal moment capacity of reinforced concrete members is also assumed to be suitable for strengthened members with FRP system. If the internal tensile forces of the strengthened member from steel and FRP is insufficient, the FRP system strain might become greater than its ultimate tensile strain which makes the strength method a contradiction and unapplicable. The experimental results of 27 strengthened beams with carbon fiber sheets which have relatively lower tensile forces from steel and FRP show that not only concrete compressive strain is lower than 0.003 but also measured ultimate moment was lower than nominal moment using the strength method.

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.

A Study on Flexural and Shear Behavior of the Structure with Steel Plate Concrete to Reinforced Concrete Member's Connection (철근 콘크리트와 강판 콘크리트 간 이질접합부로 구성된 구조물의 휨 및 전단거동 특성 연구)

  • Hwang, Kyeong Min;Lee, Kyung Jin;Lee, Jong Bo;Won, Deok Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.5A
    • /
    • pp.267-275
    • /
    • 2012
  • This paper describes the experimental study on the structural behavior of the joint plane between a RC(Reinforced Concrete) wall and a SC(Steel Plate Concrete) wall under out-of plane flexural loads and in-plane shear loads. The test specimens were produced with L and I shape to assess efficiently flexural and shear behavior of the structures. In order to consider dynamic loads such as earthquake, cyclic loading tests were carried out. As results of the out-of plane flexural tests, ductile failure mode of vertical bars was shown under a push load and the failure load was more than nominal strength of the specimen. And the latter test was performed to verify the variation which was composition presence of horizontal bars in the SC member. The test results showed that capacity of the specimens was more than their nominal strength regardless of composition presence of horizontal bars.

Behavior of High Strength Concrete Beams with Hybrid Flexural Reinforcements (하이브리드 휨 보강 고강도 콘크리트 보의 성능 평가)

  • Yang, Jun-Mo;Min, Kyung-Hwan;Kim, Young-Woo;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.13-16
    • /
    • 2008
  • In a tension-controlled section, all steel tension reinforcement is assumed to yield at ultimate when using the strength design method to calculate the nominal flexural strength of members with steel reinforcement arranged in multiple layers. Therefore, the tension force is assumed to act at the centroid of the reinforcement with a magnitude equal to the area of tension reinforcement times the yield strength of steel. Because FRP materials have no plastic region, the stress in each reinforcement layer will vary depending on its distance from the neutral axis. Similarly, if different types of FRP bars are used to reinforce the same member, the stress level in each bar type will vary, and the member will show different behavior from our expectation. In this study, six high-strength concrete beam specimens reinforced with conventional steels, CFRP bars, and GFRP bars as flexural reinforcements were constructed and tested. The members reinforced with hybrid reinforcements showed higher stiffness, smaller crack width, and better ductility than the members reinforced with single type of FRP bars.

  • PDF