• Title/Summary/Keyword: 휨성능 평가

Search Result 635, Processing Time 0.028 seconds

Flexural Capacity Evaluation of Reinforced Concrete Members with Corroded Steel Expansion and Debonding Area at the Interface Steel to Concrete Surface (철근부식 팽창 및 비부착 구간에 따른 RC 부재의 휨 성능 평가)

  • Jung, Woo-Young;Beak, Sang-Hoon;Yeon, Jong-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.5
    • /
    • pp.7-13
    • /
    • 2008
  • This paper presents experimental and analysis studies about both the corroded steel expansion and the variation of poor bonding range between steel and concrete. A loss of overall bonding capacity at the concrete-steel interface is evaluated experimentally and crack patterns at the bottom of the concrete are presented here. Steel-concrete interface is covered by rubber due to present local loss of the concrete-steel interface bonding capacity. In case of crack analysis performed by commercial FEM programs. we investigated crack‘s pattern and location. Finally, it is concluded that overall flexural capacity of the reinforced concrete structure is increased by the corroded steel expansion and is dependent of the bonding range at the steel- concrete interface. These results give an important factor to decide a life of reinforced concrete structures.

Flexural Behavior of Highly Ductile Cement Composites Mimicking Boundary Conditions of Shellfish Skin Layer (패류 껍질층의 경계면을 모방한 고연성 시멘트 복합재료의 휨 거동)

  • Kwon, Ki-Seong;Chun, Jae-Yeong;Bang, Jin-Wook;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.1
    • /
    • pp.108-115
    • /
    • 2020
  • In this study, the flexural performance of Highly Ductile Cement Composites(HDCC) mimicking boundary conditions of shellfish skin layer was evaluated. To improve ductility by mimicking the boundary skin layer structure of shellfish, the method of stratification by charging between precast panels using HDCC and the method of distributing PE-mesh to the interface surface were applied. Evaluation of flexural performance of layered cement composite materials mimicking boundary conditions of shellfish skin layer resulted in increased ductility of all test specimens applied with stratified cross-section compared to typical bending test specimens. The layered method by inserting PE-mesh showed excellent ductility. This is most likely because the inserted PE-mesh made an interface for separating the layers while the HDCC pillars in the PE-mesh gave adhesion between layers.

An Experimental Study to Evaluate the Flexural Performance of Steel Fiber-Reinforced Self-Compacting Concrete (강섬유를 보강한 자기충전 콘크리트의 휨 성능 평가를 위한 실험 연구)

  • Park, Yon-Dong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.13 no.6 s.58
    • /
    • pp.166-175
    • /
    • 2009
  • An experimental study was carried out to estimate the flexural performance of steel fiberreinforced self-compacting concrete. Seven slabs with three different steel fiber-reinforced concretes were prepared to make beam specimens. After proper curing period, each slab was cut to five beams with a diamond saw. The beam specimen was tested with displacement control method to obtain load-deflection curve. As the results, the self-compacting concrete beam showed higher flexural strength, ductility and toughness index compared to the normal concrete beam. This means that steel fiber-reinforced self-compacting concrete can be used more widely in the field of architecture and civil engineering because of its self-compactability and good mechanical properties.

Evaluation of Advanced Ductility of Ultra High Performance Concrete with Hybrid type of Steel Fiber (하이브리드 강섬유 사용에 따른 초고성능 콘크리트의 인성 향상 평가)

  • Ryu, Gum-Sung;Koh, Kyung-Taek;Kang, Su-Tae;Park, Jung-Jun;Kang, Hyun-Jin;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.437-438
    • /
    • 2010
  • This study was carry out to evaluate the effect of flexural behavior according to using hybrid steel fiber in UHPC. The evaluation of the flexural behavior of UHPC using hybrid fibers showed that the admixing of hybrid steel fibers at a volumic ratio of 2% increased the flexural strength by more than 27% (maximum 50%) compared to the use of steel fibers only. A ratio of 1.5% was seen to provide flexural strength exceeding the current strength of UHPC.

  • PDF

Structural Performance Evaluation on Flexural and Shear Capacity for Weight Reducing Steel Wire-Integrated Void Deck Plate Slab (자중저감 철선일체형 중공 데크플레이트 슬래브의 휨 및 전단내력에 대한 구조성능평가)

  • Kim, Sang-Seup;Ryu, Deog-Su;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.4
    • /
    • pp.411-422
    • /
    • 2012
  • The purpose of this study is to evaluate the flexural and shear capacity of steel wire-integrated void deck plate slabs. In order to evaluate flexural and shear capacity, we make five 150mmspecimens and three 200mmspecimens by slab depth as main variable. Each series of specimen is comprised of an existing steel wire-integrated deck-plate slab and two specimens using topping depth as variable. From the series of experiments, steel wire-integrated void deck plate slabs has any decline in flexural and shear performance. Therefore, a void-deck-plate slab which inserts Omega-steel plate showed reducing a using concrete-volume and had flexural and shear capacity following existing steel wire-integrated deck-plate.

An Experimental Evaluation of Bending and Shear Resisting Strengths for Wire-Integrated Deck Plate System using Lightweight Concrete (경량콘크리트를 사용한 철선일체형 바닥구조의 휨내력 및 전단내력 실험적 평가)

  • Lee, Seong-Hui;Bang, Jung-Seok;Won, Yong-An;Ryoo, Jae-Yong;Choi, Sung-Mo
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.3
    • /
    • pp.275-282
    • /
    • 2011
  • A recent development of seismic design, which is required among environmentally friendly members, increased the concern on light-weight concrete. Extending around the building, the structural design which is applied for light-weight concrete has been increased. This study therefore evaluates the bending resistance and the shear resistance involved using four specimens that were manufactured and tested. The parameters used in this study exist. This study investigates the structural performance of composite slab using light-weight concrete with KCI (2007).

선박 접이안용 계선주 성능 평가에 관한 연구

  • Yu, Yong-Ung;Lee, Yun-Seok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2017.11a
    • /
    • pp.121-123
    • /
    • 2017
  • 계선주는 선박이 접안 중 안전성을 확보하는 설비로서 계류안전성 평가에 필수 설비 중 하나이다. 이러한 계선주는 국내 항만 및 어항설계 기준의 견인력에 따라 규격이 구분되어 설치되나 규격별 성능 확인을 위한 평가 방법이 제시되지 않아 평가 방법 검토가 필요하다. 이 연구에서는 견인력에 따라 설치되는 계선주 규격별 제원을 분석하여 재질과 특성에 따라 견인력에 따라 작용하는 수평력과 수직력을 휨 응력과 전단 응력으로 나누어 분석하고 이에 따른 성능 적정성을 평가하고 살제 허용 견인력을 평가 하고자 하였다. 또한 계선주 설치 후 노후화로 인한 성능 변경을 평가하고 예측하고자 두께를 통한 평가 방안을 검토하고자 하였다.

  • PDF

The Evaluation of Flexural Performance in UHPC(Ultra High Performance Concrete) according to Placement Methods (타설방법에 따른 초고성능 콘크리트의 휨성능 평가)

  • Ryu, Gum-Sung;Kang, Su-Tae;Park, Jung-Jun;Ahn, Ki-Hong;Koh, Kyung-Taek;Kim, Sung-Wook
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.357-360
    • /
    • 2008
  • UHPC which was a structural material exhibiting very remarkable mechanical performances with compressive strength, tensile strength and flexural strength rising up to 200MPa, 15MPa and 35MPa, respectively. In addition, this material presents exceptional durability regard to the very low diffusion and penetration speeds of noxious substances like chloride ions This study was carry out to evaluate the effect of flexural behavior according to placement method in UHPC. The results is showing that the placement methods have remarkable influence flexural strength Addition to it is showing that the placement methods made little difference in the first cracking strength but considerable gap up to 2 or 3 times in the ultimate flexural strength.

  • PDF

Flexural Capacity and CO2 Reduction Evaluation for Composite Beam with Weight Reducing Steel Wire-Integrated Void Deck Plate slab (자중저감 철선일체형 중공 데크플레이트 슬래브를 사용한 합성보의 휨내력 및 CO2 감소량 평가)

  • Kim, Sang-Seop;Park, Dong-Soo;Boo, Yoon-Seob
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.3
    • /
    • pp.313-323
    • /
    • 2012
  • The purpose of this study is to evaluate $CO_2$ reduction and the flexural performance of steel wire-integrated void deck plate slabs that were inserted in omega-shaped steel plates to reduce concrete and welded H-section beams. The void deck plate slab can secure the structure, not only reducing the weight of the building but it is also eco-friendly. Therefore, this study evaluated the flexural performance of the composite beam by conducting a monotonic loading test with the use of actuators. It quantitatively evaluated the $CO_2$ emission based on earlier studies. The main test parameters are the concrete thickness of upper slabs, and the interrupted width of the omega-shaped steel plate. The result of the test showed that the welded H-section beam applied steel wire-integrated void deck plate slabs that were inserted into the omega-shaped steel plate declined in flexural performance on the composite beam after reducing concrete volume. Likewise, it is effective in reducing $CO_2$.

Bending Capacity Evaluation of the Infilled Composite Beam with Semi-slim Closed Section (반슬림 폐단면 충전형 합성보의 휨성능 평가)

  • Lim, Hwan Taek;Choi, Byong Jeong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.130-140
    • /
    • 2018
  • An AU-composite beam based on U-shaped steel beams and steel plate anchors of type A was developed. The composite beam reduced the height of the building floor and construction cost. In addition, it decreased the length of construction work, and improved the flexural strength and stiffness as a form of tubes. In this study, AU-composite beams were tested directly and their performance was evaluated through bending experiments. The strength of the specimens was increased initially by linear loads and reached a maximum strength due to destruction of the concrete slab. All of the experiments showed more than 85% of the maximum stress and performed gentle movement. In addition, there was good composite behavior with the steel plate anchor that had excellent composite effects and reached full strength until the maximum strength was reached. When the thickness of the steel plate was increase, the flexural stiffness and strength of the specimen were improved. Therefore, the flexural strength of AU-composite beams can be estimated using the flexural strength formula according to the KBC 2016.