• Title/Summary/Keyword: 휨보강효과

Search Result 295, Processing Time 0.019 seconds

An Experimental Study on the Structural Behavior of Reinforced Concrete Beam with External Adhesion of CFRP Grid (격자형 탄소섬유강화플라스틱의 외부부착 보강에 따른 철근 콘크리트 보의 구조적 거동에 관한 실험적 연구)

  • Kim, Sang-Woo;Kim, Geon-Woo;Kim, Jin-Sup
    • Land and Housing Review
    • /
    • v.12 no.4
    • /
    • pp.119-125
    • /
    • 2021
  • The study presents the ductility reinforcement effect of the RC bending member using the CFRP Grid as an experimental result. Experimental variables include a non-reinforced RC bending member (ORI), a bottom reinforced RC bending member (REB), and an RC bending member reinforced at the bottom and side (REBS). The experiment was carried out with four points bending test. As a result of the experiment, it was confirmed that the maximum bending strength increased by 17-20% through reinforcement. In addition, the ductility index calculation results confirmed that the ductility index of REB and REBS increased by 2 and 3 times, respectively, compared to the ORI.

A Study on the Strengthening Effect of Reinforced Conctete BeamsFlexural Strengthening after Pre-loading (선가력 후 휨 보강한 RC보의 보강 효과에 관한 연구)

  • Kim, Jeong-Sup;Sin, Yong-Seok;Jo, Cheol-Hee;Kim, Kyoug-Ok
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.183-190
    • /
    • 2006
  • From the result of this research above, it may be summed up as follows. As a summary of results from each experiment, as the test body reinforced with the carbon rods was embedded inside the concrete section and made it possible uniform movement, this study has shown that it had excellent characteristics in improving the flexural strength and ductility. Also, it was considered as the carbon-steel sheet composite plate was to exert the strength more if it would complement the adherence with the concrete.

Flexural Failure Behaviour of RC Beams Strengthened by CFS according to Loading Condition (CFS로 보강된 RC보의 가력상태에 따른 휨파괴 거동)

  • Park, Sung-Soo;Cho, Su-Je
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.3
    • /
    • pp.223-230
    • /
    • 2003
  • The purpose of this research are to investigate experimentally flexural strengthening effects and flexural behaviour of RC beams strengthened by carbon fiber sheet(CFS) with/without superimposed pre-load. Test parameters of experiment are tension reinforcement ratio(0.85, 1.32, 1.91%) and pre-load(80% of yield capacity of unstrengthened beams). The structural behaviour of strengthened beams are compared with in terms of yield load and ultimate load, load-deflection relation, ductility, strengthened efficiency. From the test results, it were shown that ultimate capacity and flexural failure behaviour of RC beams strengthened by CFS changed by initial stresses between original beams and bonded CFS.

Experimental Study about Flexural Strengthening Effects According to evelopment Method of Carbon Fiber Sheet for Reinforced Concrete Beam (탄소섬유시트의 단부정착방법에 따른 철근콘크리트보의 휨 보강 효과에 대한 실험적 연구)

  • Won, Chi-Moon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.119-126
    • /
    • 2006
  • This paper presents the results of a test program for flexural strengthening characteristics of continuous unidirectional carbon-fiber sheets bonded or/and developed to reinforced concrete (RC) beams. A total of six $150mm{\times}250mm{\times}2000mm$ concrete beams were tested. Various sheet development locations were studied to determine their effects on the ultimate flexural strength of the beams. From the test, it was found that the strength increases remarkably with the development of sheets at shear bar. Among the various location, multi-developed sheet provided the most effective strengthening for concrete beam. Beam strengthened using this scheme showed 53% increase in flexural capacity as compared to the control beam without any strengthening.

An Experimental Study on the Flexural Strengthening Effect of Reinforced Concrete Beams Flexural Strengthened by CFRP (CFRP로 보강된 철근콘크리트 보의 휨 보강효과에 관한 실험적 연구)

  • Kim, Jae-Hun;Park, Sung-Moo;Kang, Joo-Won;Shin, Seung-Hyup
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.2 s.20
    • /
    • pp.123-129
    • /
    • 2006
  • Recently, many researches have been conducted about reinforced concrete structures strengthened with FRP plates. In case of structures strengthened with FRP plates, the issue of premature debonding FRP plate has been raised through many previous researches. The purpose of this paper is what structural behavior and flexaural capacity of reinforced concrete beams which are strengthened for flexure is investigated about the using secondary ironware in the method of external bonded CFRP plate, and the method of near surface mounted CFRP-Rod. Also, in order to evaluate flexural capacity, experiments of the reinforced concrete beams with exteranl bonded CFRP plate and near surface mounted CFRP-Rod have been compared and investigated.

  • PDF

Evaluation on Flexural Capacity of Reinforced Concrete Beams with Ultra-High Performance Cementitious Composites (UHPCC를 사용한 철근 콘크리트 보의 휨강도 평가)

  • Kang, Su-Tae;Park, Jung-Jun;Koh, Gyung-Taek;Kim, Sung-Wook
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.5
    • /
    • pp.81-90
    • /
    • 2008
  • This paper concerns the flexural capacity of reinforced concrete beams with ultra-high performance cementitious composites(UHPCC). It was investigated if the existing equations to estimate the flexural capacity of reinforced fiberous concrete beams are applicable with the experiments including lightly reinforced concrete beams. The reinforcing effect when the steel fiber reinforced concrete was used in beams was also estimated. The results showed that the equation to predict the flexural capacity of reinforced steel fiber concrete by ACI 544 committee didn't have a good agreement with the test results and underestimated the flexural capacity in especially lightly reinforced beams with under 1.5% reinforcement ratio. the enhancement of flexural capacity was quite considerable in lightly reinforced beams when the steel fiber reinforced concrete was used. A equation to predict the reinforcing effect of steel fiber in reinforced steel fiber beams was developed. the equation was proposed as a function of both the characteristics of steel fiber and reinforcement ratio.

탄소 및 아라미드 섬유시트로 보강된 철근콘크리트 보의 휨 성능평가실험

  • 구봉근;김태봉;김창운;이재범
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 1997.11a
    • /
    • pp.171-176
    • /
    • 1997
  • 본 연구에서는 노후화 된 구조물을 효과적으로 보강할 수 있는 방법에 대해 휨 거동을 중심으로 그 성능을 규명하고자 하였다. 연구에 채택된 보강재료로는 현재 시공의 간편성과 보강된 부재 단면의 최소화로 최근에 각광을 받고 있는 섬유접착 보강재료 중에서 탄소섬유쉬트(CFS)와 아라미드섬유쉬트(AFS) 접착공법을 선택하였으며, 현재 상용중인 보강단면을 채택하여 보수ㆍ보강을 실시하였다. 그리고, 보강효과를 실험을 통하여 비교ㆍ분석함으로써 합리적인 보수ㆍ보강공법을 위한 선택의 폭을 넓히고, 현재 활발히 진행중인 국내 보수ㆍ보강의 체계화를 위한 기초적인 자료를 얻고자 한다. (중략)

  • PDF

Theoretical Analysis for Strengthening Effects of RC Beam with Reinforced FRP Sheet (FRP 시트로 보강된 RC 보의 보강 효과에 대한 이론적 분석)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.4
    • /
    • pp.100-107
    • /
    • 2018
  • The objective of this study is to assess the strengthening effects of fiber reinforced polymer(FRP) sheets such as Carbon fiber, Glass fiber, and PET(polyethylene terephthalate) on reinforced concrete flexural members. Variables of theoretical analysis are types of strengthening materials, material properties and amount of strengthening materials. A virtual flexural member without FRP sheets was created as a control specimen to understand the structural behavior of the non-strengthened specimen in terms of elastic and ultimate cross section. In total, 11 specimens including one non-strengthened and ten strengthened specimens were investigated. Various variables such as types of strengthening, strengthening properties, and amount of strengthening were studied to compare the behavior of the control specimen with those of strengthened specimens with regard to moment-curvature relationship. Results of theoretical analysis showed that the moment capacity of strengthened specimens was superior to that of the control specimen. However, the control specimen indicated the best ductility among all the specimens. As the amount of strengthening increased, flexural performance was improved. Furthermore, the results indicated that the ductile effect of members was affected by the ultimate strain of FRP sheets. The strengthening effect on the damaged member was similar to that on the non-damaged one since there was less than 10% difference in terms of flexural strength and ductility. Therefore, even if a damaged member is treated as non-damaged for analysis there is probably no noticeable difference.

Prediction of Flexural Capacities of Steel-Fiber Reinforced Concrete Beams (강섬유보강 콘크리트보의 휨내력 예측식의 제안)

  • Kim, Woo-Suk;Kwak, Yoon-Keun;Kim, Ju-Bum
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.361-370
    • /
    • 2006
  • The results of previous tests by many researchers have been compiled to evaluate the flexural strength of steel-fiber reinforced concrete beams. Existing prediction equations for flexural strength of such beams were examined, and a new equation based on mechanical and empirical observations, was proposed. In other words, the constitutive models for steel fiber reinforced concrete(SFRC) were proposed, which incorporate compressive and tensile strength. A steel model might also exhibit stain-hardening characteristics. Predictions based on the model are compared with the experimental data. For the collection of tests, a variation of the Henager equations, modified to apply to fiber-reinforced concrete beams, provided reliable estimates of flexural strength. The proposed equations accounted for the influence of fiber-volume fraction, fiber aspect ratio, concrete compressive strength and flexural steel reinforcement ratio. The proposed equations gave a good estimation for 129 flexural specimens evaluated.

Flexural Strengthening Effects of RC Beam Reinforced with Pre-stressing Plate (긴장을 가한 보강 플레이트로 보강된 RC 보의 휨보강 효과)

  • Ha, Sang-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.23 no.1
    • /
    • pp.171-178
    • /
    • 2019
  • Fiber-reinforced polymer (FRP) composites have proved to be reliable as strengthening materials. Most of existing studies used single types of FRP composites. Therefore, in this experimental study, carbon FRP sheet, aramid FRP sheet, and hybrid FRP plate including glass fibers were fabricated, and the effect of pre-stressed FRP composites on flexural strengthening of reinforced concrete (RC) beams was investigated. In total, eight RC beam specimens were fabricated, including one control beam (specimen N) without FRP composites and seven FRP-strengthened beams. The main parameters were type of FRP composite, the number of anchors used for pre-stressing, and thickness of FRP plates. As a result, the beam strengthened with pre-stressed FRP plate showed superior performance to the non-strengthened one in terms of initial strength, strength and stiffness at yielding, and ultimate strength. As the number of anchors and thickness of FRP plate (i.e., amount of FRP plates) increased, the strengthening effect increased as well. When hybrid FRP plates were pre-stressed, the strengthening effect was higher in comparison with pre-stressed single type FRP plate.