• Title/Summary/Keyword: 훈련 데이터

Search Result 1,020, Processing Time 0.029 seconds

intrusion detection using training data with intrusion instances (침입 사례를 포함하는 훈련 데이터를 이용한 침입 탐지)

  • 이재흥;박용수;이영기;조유근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2003.04a
    • /
    • pp.383-385
    • /
    • 2003
  • 침입 탐지 시스템에 이상 탐지 기법(anormal detection)을 적용할 때 정상적인 시스템호출 순서에 대한 훈련이 필요하다. 이 때 발생하는 가장 큰 문제점중 하나는 침입 없는 훈련 데이터의 확보이다. 훈련 데이터에 침입이 있으면 이 침입을 정상으로 간주해서 이후에 같은 침입이 일어나도 이를 탐지해 내지 못하기 때문이다. 하지만, 침입 없는 훈련 데이터를 얻는 것은 매우 어렵다. 본 논문에서는 훈련 데이터에 침입이 포함되어 있더라도 효과적으로 침입을 탐지할 수 있는 시스템 호출 기반 침입 탐지 기법을 제안한다. 제안 기법은 훈련 데이터에 침입이 존재할 경우 침입 부분에서 빈도가 매우 적은 데이터들이 연속적으로 나타나는 성질을 이용한다. 이를 위해 훈련 데이터를 일정 개수씩 블록으로 묶은 뒤 평균 빈도를 계산해서 그 값이 임계치보다 작은 경우 이를 침입 데이터로 간주하여 훈련 데이터에서 제외하는 방법을 사용하였다. 실험 결과 블록 크기를 적절하게 잡았을 경우 기존의 Eskin 기법보다 향상된 결과를 얻을 수 있었다.

  • PDF

A Study on the Frame Structure for the Performance Improvement of Digital Terrestrial TV Receiver (디지털 지상파 TV 수신 성능 향상을 위한 데이터 프레임 구조에 관한 연구)

  • 박성우;김철민;김대진;전희영
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.313-316
    • /
    • 2000
  • 본 논문에서는 동적 다중경로 환경에 대한 DTV수신 성능 개선을 위하여 정보 데이터 세그먼트 부분에서는 Stop and Go 알고리즘을 사용하고 313 세그먼트 중 한 개만이 훈련열로 쓰이는 기존의 ATSC 표준의 데이터 프레임 구조보다 더 많은 훈련열이 들어있는 새로운 데이터 프레임 구조를 제안한다. 정보가 없는 널 패킷을 훈련열로 대체하기 때문에 데이터의 손실 없이 더 많은 훈련열을 사용하여 특히 동적 다중경로 환경에서 등화기의 수렴 특성을 개선할 수 있다. 전산 모의 실험을 통하여 동적 다중경로 환경의 도플러 천이에 대한 시스템 수신 성능의 개선을 확인하였다.

  • PDF

Enhanced Deep Learning for Animal Image Patch Classification (동물 이미지 패치 분류를 위한 향상된 딥 러닝)

  • Shin, Seong-Yoon;Lee, Hyun-Chang;Shin, Kwang-Seong
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.01a
    • /
    • pp.389-390
    • /
    • 2022
  • 본 논문에서는 동물 이미지 분류를 위한 작은 데이터 세트를 기반으로 하는 향상된 딥 러닝 방법을 제안한다. 먼저, CNN을 사용하여 작은 데이터 세트에 대한 훈련 모델을 구축한다. 데이터 증대를 사용하여 훈련 세트의 데이터 샘플을 확장한다. 다음으로, VGG16과 같은 대규모 데이터 세트에서 사전 훈련된 네트워크를 사용하여 작은 데이터 세트의 병목 현상 기능을 추출한다. 그리하여 두 개의 NumPy 파일에 새로운 훈련 데이터 세트 및 테스트 데이터 세트로 저장한다. 마지막으로 완전히 연결된 네트워크를 훈련시킨다.

  • PDF

A Study of GAN-based data augmentation technique on Acceleration Data Gereration (GAN 기반 데이터 증강기법을 통한 가속도 데이터 생성에 대한 연구)

  • Kang, Sung-Hwan;Chow, We-Duke
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2022.07a
    • /
    • pp.495-497
    • /
    • 2022
  • 본 데이터 GAN 기법 데이터 증강기법을 적용하여 가속도 데이터를 증강하는 방법에 대해 연구한다. 가속도 데이터는 사람의 활동패턴을 인지하는데 있어 가장 기본적인 데이터로 활용된다. 가속도 데이터를 증강한 뒤, 활동패턴을 인지하는 머신러닝 모델 훈련에 사용한 결과 생성한 데이터가 육안으로 확인하였을 때 실제 데이터와 유사한 패턴을 형성하였고, 실제 활동패턴인지 모델 훈련에 사용한 결과 정확도(Accuracy)는 기존 데이터로만 훈련한 경우 74%인데 비해 증강된 데이터를 혼합하여 훈련하였을 때 약 88%로 개선된 것을 확인하였다.

  • PDF

Bio-signal Data Augumentation Technique for CNN based Human Activity Recognition (CNN 기반 인간 동작 인식을 위한 생체신호 데이터의 증강 기법)

  • Gerelbat BatGerel;Chun-Ki Kwon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.24 no.2
    • /
    • pp.90-96
    • /
    • 2023
  • Securing large amounts of training data in deep learning neural networks, including convolutional neural networks, is of importance for avoiding overfitting phenomenon or for the excellent performance. However, securing labeled training data in deep learning neural networks is very limited in reality. To overcome this, several augmentation methods have been proposed in the literature to generate an additional large amount of training data through transformation or manipulation of the already acquired traing data. However, unlike training data such as images and texts, it is barely to find an augmentation method in the literature that additionally generates bio-signal training data for convolutional neural network based human activity recognition. Thus, this study proposes a simple but effective augmentation method of bio-signal training data for convolutional neural network based human activity recognition. The usefulness of the proposed augmentation method is validated by showing that human activity is recognized with high accuracy by convolutional neural network trained with its augmented bio-signal training data.

Development of training assessment system for emergency response training simulator (가상현실 기반 안전대응 훈련 시뮬레이터를 위한 훈련평가 시스템 개발)

  • Lee, Jai-Kyung;Huh, Young Cheol
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2015.10a
    • /
    • pp.1811-1812
    • /
    • 2015
  • 대형화, 복잡화 되어가는 대형 기계설비의 위험상황에 대한 실제 훈련은 소요시간 및 비용 증가, 훈련자 안전 확보의 어려움, 반복적인 훈련 및 평가가 어렵기 때문에 가상현실을 이용한 훈련 시뮬레이터가 대안으로 제시되고 있다. 본 논문에서는 대형 기계설비 안전대응 시뮬레이터에서 수행된 훈련에 대한 훈련자 피드백 및 평가를 위하여 개발된 시스템을 소개한다. 가상현실 기반 훈련 시뮬레이터에서 수행한 훈련결과 데이터를 활용하여 훈련 시나리오 내 임무수행 여부, 수행시간/거리에 대한 정량적 평가와 함께 훈련자의 훈련동작 데이터와 표준동작과의 비교를 통하여 효율적인 훈련을 위한 피드백을 수행할 수 있다. 또한 평가 결과의 시각화를 통해 직관적인 훈련개선이 가능하도록 하였다. 개발된 훈련평가 시스템을 활용하여 효과적인 훈련자 피드백 제공 및 반복적인 훈련 수행을 통한 안전대응 능력 향상이 가능할 것으로 판단된다.

An Enhanced Deep Learning for Animal Image Based on Small Datasets (적은 데이터 세트를 기반으로 한 동물 이미지의 향상된 딥 러닝)

  • Shin, Seong-Yoon;Shin, Kwang-Seong;Lee, Hyun-Chang
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2020.01a
    • /
    • pp.247-248
    • /
    • 2020
  • 본 논문은 동물 이미지 분류를 한 작은 데이터 세트를 기반으로 개선 된 딥 러닝 방법을 제안한다. 먼저, 소규모 데이터 세트에 대한 훈련 모델을 구축하기 위한 CNN이 사용되는 반면, 데이터 보강은 훈련 세트의 데이터 샘플을 확장하는 데 사용한다. 둘째, VGG16과 같은 대규모 데이터 세트에서 사전 훈련 된 네트워크를 사용하여 소규모 데이터 세트의 병목 현상 기능을 추출하여 두 개의 NumPy 파일에 새로운 학습 데이터 세트 및 테스트 데이터 세트로 저장한다. 마지막으로 새로운 데이터 세트로 완전히 연결된 네트워크를 학습한다.

  • PDF

Building of cyanobacteria forecasting model using transformer (Transformer를 이용한 유해남조 발생 예측 모델 구축)

  • Hankyu Lee;Jin Hwi Kim;Seohyun Byeon;Jae-Ki Shin;Yongeun Park
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.515-515
    • /
    • 2023
  • 팔당호는 북한강과 남한강이 합류하여 생성된 호소로 수도인 서울과 수도권인 경기도 동부지역의 물 공급을 담당하는 중요한 상수원이다. 이러한 팔당호에서 유해남조 발생은 상수원수 활용과 직접적으로 연관되어 있어 신속하고 정확한 관리 및 예측이 필요하다. 본 연구에서는 안전한 상수원 활용을 위해, 딥러닝 기법을 이용하여 유해남조 사전 예측 모델을 구축하고자 하였다. 모델 입력 변수는 2012년부터 2021년까지 10년 동안의 주간 팔당호 수질(수온, DO, BOD, COD, Chl-a, TN, TP, pH, 전기전도도, TDN, NH4N, NO3N, TDP, PO4P, 부유물질)과 수문(유입량, 총방류량), 기상 정보(평균기온, 최저기온, 최고기온, 일 강수량, 평균풍속, 평균 상대습도, 합계일조량), 그리고 북한강과 남한강 유입지점의 남조 세포 수를 사용하였다. 모델 출력 변수는 수질, 수문, 기상 요인으로 인한 남조의 성장 발현 시기를 고려하여 1주 후의 댐앞 남조 세포수를 사용하였다. 사용한 딥러닝 기법은 최근 주목받고 있는 Temporal Fusion Transformer (TFT)를 사용하였다. 모델 훈련용 데이터와 테스트용 데이터는 각각 8:2의 비율로 나누었으며, 검증용 데이터는 훈련용 데이터 내에서 훈련 데이터와 검증 데이터를 6:4 비율로 분배하였다. Lookback은 5로 설정하였고, 이는 주단위 데이터로 구성된 데이터세트의 특성을 반영한 것이다. 모델의 성능은 실측값과 예측값을 토대로 R-square와 Root Mean Squared Error (RMSE)를 계산하여 평가하였다. 모델학습은 총 154번 반복 진행되었으며, 이 중 성능이 가장 준수한 시점은 54번째 반복 시점으로 훈련손실 대비 검증손실이 가장 양호한 값을 나타냈다(훈련손실:0.443, 검증손실 0.380). R-square는 훈련단계에서 0.681, 검증단계에서 0.654였고, 테스트 단계에서 0.606으로 산출되었다. RMSE는 훈련단계에서 0.614(㎍/L), 검증단계에서 0.617(㎍/L), 테스트 단계에서 0.773(㎍/L)였다. 모델에 사용한 데이터세트가 주간 데이터라는 특성을 고려하면, 소규모 데이터를 사용하였음에도 본 연구에서 구축한 모델의 성능은 양호하다고 평가할 수 있다. 향후 연구에서 데이터세트를 보강하고 모델을 업데이트한다면, 모델의 성능을 더욱더 개선할 수 있을 것으로 기대된다.

  • PDF

Packet Payload-based Network Traffic Classification using Convolutional Neural Network (Convolutional Neural Network을 활용한 패킷 페이로드 기반 네트워크 트래픽 분류)

  • Kim, Ju-Bong;Lim, Hyun-Kyo;Heo, Joo-Seong;Han, Youn-Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2017.04a
    • /
    • pp.928-931
    • /
    • 2017
  • 네트워크 트래픽 데이터를 정제하여, Convolutional Neural Network Model 훈련에 적합한 데이터 세트로 변환하는데, 그 방법은 패킷 단위의 트래픽 데이터를 이미지 형태로 만드는 것이다. 완성된 데이터 세트를 훈련데이터로 하여 Convolutional Neural Network Model에 훈련하고, 훈련데이터의 이미지 크기를 변환해가며 훈련시킨 결과에 대해 비교 분석 및 평가를 진행한다.

A Study on the Data Pseudonymization Methodology for Defense Training Data as Artificial Intelligence Technology is applied to the Defense Field (국방 분야 인공지능 기술 접목에 따른 교육훈련 데이터 가명처리 방법론에 관한 연구)

  • Hyunsuk Cho;Sujin Kang;Dongrae Cho;Yeongseop Shin
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.1-7
    • /
    • 2023
  • Recently, in the defense field, efforts are being made to collect data by building data centers to incorporate artificial intelligence technology. Weapon system training data can be used as input data for artificial intelligence models and can be used as high-quality data to maximize training performance and develop military strategies. However, training data contains personal information such as the names and military numbers of the personnel who operated the equipment, and training records that reveal the characteristics of the weapon system. If such data is passed on to the enemy, not only the specifications and performance of the weapon system but also the proficiency of each operator may be exposed. In this paper, we propose a pseudonym processing methodology for education and training data security and also suggest a direction for revising related laws.

  • PDF