• 제목/요약/키워드: 훈련플랫폼

검색결과 98건 처리시간 0.02초

Evidential Belief Function, Weight of Evidence 및 Artificial Neural Network 모델을 이용한 산사태 공간 취약성 예측 연구 (Landslide Susceptibility Prediction using Evidential Belief Function, Weight of Evidence and Artificial Neural Network Models)

  • 이사로;오현주
    • 대한원격탐사학회지
    • /
    • 제35권2호
    • /
    • pp.299-316
    • /
    • 2019
  • 본 연구는 지리정보시스템(GIS) 환경에서 확률 모델인 Weight Of Evidence (WOE)와 Evidential Belief Function (EBF), 기계학습 모델인 Artificial Neural Networks (ANN) 모델을 이용하여 평창지역의 산사태 취약성도를 공간적으로 분석하고 예측하였다. 본 연구지역은 2006년 태풍 에위니아에 의한 집중호우로 산사태가 많이 발생하여 많은 재산 및 인명피해가 발생하였다. 산사태 취약성도를 작성하기 위해 항공사진을 이용하여 3,955개의 방대한 산사태 발생 위치를 탐지하였고, 환경공간정보인 지형, 지질, 토양, 산림 및 토지이용 등의 공간 데이터를 수집하여 공간데이터베이스에 구축하였다. 이러한 공간데이터베이스를 이용하여 산사태에 영향을 줄 수 있는 인자 17개를 추출하여 입력 인자와 EBF, WOE, ANN 모델을 이용하여 산사태 취약성도를 작성하고 검증하였다. 작성 및 검증을 위해 산사태 자료는 각각 50%씩 나누어서 훈련 및 검증을 실시하였고, 검증결과 WOE 모델의 경우는 74.73%, EBF 모델의 경우는 75.03%, ANN 모델의 경우는 70.87%의 예측 정확도를 나타내었다. 본 연구에 사용된 모델 중 EBF 모델이 가장 높은 정확도를 나타냈으며, 모든 모델에서 70% 이상의 예측 정확도를 보여 본 연구에서 사용된 기법이 산사태 취약성도 작성에 유효함을 나타내었다. 본 연구에서 제안된 WOE, EBF, ANN 모델과 산사태 취약성도는 이전에 산사태가 발생하지 않은 지역의 산사태를 예측하는 데 사용될 수 있다. 이러한 취약성도는 산사태 위험 감소를 촉진하고, 토지 이용 정책 및 개발을 위한 기초자료 역할을 할 수 있으며, 궁극적으로 산사태 재해 예방을 위한 시간과 비용을 절약할 수 있다. 향후 보다 많은 지역에서 산사태 취약성도 작성 방법을 적용하여 산사태 위험 예측을 위한 일반화된 모델을 이끌어 내야 한다.

가상현실(VR)기법을 이용한 조경설계 구현방법 - 주택정원 설계 중심으로 - (Realization Method for Landscape Architecture Design Using Virtual Reality Technology - Focused on the Residential Garden Design -)

  • 덩베이지아;김영훈;차오린썬;허상현
    • 한국조경학회지
    • /
    • 제47권3호
    • /
    • pp.71-80
    • /
    • 2019
  • 지능화와 정보화를 핵심으로 하는 4차 산업혁명이 2016년에 열렸다. 본 연구는 4차 산업혁명시대에 가장 주목받고 있는 가상현실(Virtual Reality: VR) 기술을 이용해서 조경설계 구현에 적용하는 접근 용이성이 강한 버츄얼 워크스루 방법을 제시하는 목적으로 시행되었다. 현재 가상현실 기술은 게임, 비상훈련 및 건축설계 등 많은 영역에서 활용되어 있지만, 조경분야에서는 초기단계에 처하고 있으며, 발전 전망이 밝다. 조경관련분야에서 대부분 전통적인 2차원 도면과 동적인 동영상을 통해 조경설계를 구현하는 방법을 사용하며, 또한 게임 제작 엔진으로 가상현실 구현하는 방식을 사용하고 있으나, 여러 한계점이 존재한다. 따라서 본 연구는 설계-구현-체험 단계로 진행하였으며, 전통적인 조경설계 구현방법을 보완시키는 버츄얼 워크스루 구현방법을 제시하고자 한다. 결과적으로 버츄얼 워크스루 방법은 전통적인 방법에 비해 체험 자유성, 각도 다양성, 정보 제공 및 상호작용 등이 우수한 것으로 나타났다. 또한 높은 품질 및 효과 표현이 가능함으로 조경분야에 적용성이 강한 것으로 볼 수 있다. 향후 조경설계 평가 및 검토 관련 연구의 평가방법을 제공하며, 가상현실 조경분야에서 간편하고 활용성이 있는 구현방법으로 기대효과를 가진다. 가상현실 기법은 조경학계의 지속적인 성장을 기여할 수 있으며, 무한한 전망을 가지고 있다.

딥러닝을 사용하는 IoT빅데이터 인프라에 필요한 DNA 기술을 위한 분산 엣지 컴퓨팅기술 리뷰 (Distributed Edge Computing for DNA-Based Intelligent Services and Applications: A Review)

  • ;조위덕
    • 정보처리학회논문지:컴퓨터 및 통신 시스템
    • /
    • 제9권12호
    • /
    • pp.291-306
    • /
    • 2020
  • 오늘날 데이터 네트워크 AI (DNA) 기반 지능형 서비스 및 애플리케이션은 비즈니스의 삶의 질과 생산성을 향상시키는 새로운 차원의 서비스를 제공하는 것이 현실이 되었다. 인공지능(AI)은 IoT 데이터(IoT 장치에서 수집한 데이터)의 가치를 높이며, 사물 인터넷(IoT)은 AI의 학습 및 지능 기능을 촉진한다. 딥러닝을 사용하여 대량의 IoT 데이터에서 실시간으로 인사이트를 추출하려면 데이터가 생성되는 IoT 단말 장치에서의 처리능력이 필요하다. 그러나 딥러닝에는 IoT 최종 장치에서 사용할 수 없는 상당 수의 컴퓨팅 리소스가 필요하다. 이러한 문제는 처리를 위해 IoT 최종 장치에서 클라우드 데이터 센터로 대량의 데이터를 전송함으로써 해결되었다. 그러나 IoT 빅 데이터를 클라우드로 전송하면 엄청나게 높은 전송 지연과 주요 관심사인 개인 정보 보호 문제가 발생한다. 분산 컴퓨팅 노드가 IoT 최종 장치 가까이에 배치되는 엣지 컴퓨팅은 높은 계산 및 짧은 지연 시간 요구 사항을 충족하고 사용자의 개인 정보를 보호하는 실행 가능한 솔루션이다. 본 논문에서는 엣지 컴퓨팅 내에서 딥러닝을 활용하여 IoT 최종 장치에서 생성된 IoT 빅 데이터의 잠재력을 발휘하는 현재 상태에 대한 포괄적인 검토를 제공한다. 우리는 이것이 DNA 기반 지능형 서비스 및 애플리케이션 개발에 기여할 것이라고 본다. 엣지 컴퓨팅 플랫폼의 여러 노드에서 딥러닝 모델의 다양한 분산 교육 및 추론 아키텍처를 설명하고 엣지 컴퓨팅 환경과 네트워크 엣지에서 딥러닝이 유용할 수 있는 다양한 애플리케이션 도메인에서 딥러닝의 다양한 개인 정보 보호 접근 방식을 제공한다. 마지막으로 엣지 컴퓨팅 내에서 딥러닝을 활용하는 열린 문제와 과제에 대해 설명한다.

데이터 증강 기반 효율적인 무선 신호 분류 연구 (An Efficient Wireless Signal Classification Based on Data Augmentation)

  • 임상순
    • Journal of Platform Technology
    • /
    • 제10권4호
    • /
    • pp.47-55
    • /
    • 2022
  • 사물인터넷 환경에서는 다양한 무선 통신 기술을 사용하는 기기들이 점점 증가하고 있다. 특히, 다양한 무선 신호 변조 유형을 정확하게 식별하기 위해 효율적인 특성 추출 기법을 설계하고 무선 신호의 종류를 분류하는 것이 필수적이다. 하지만, 실제 환경에서 레이블이 지정된 무선 신호 데이터를 수집하는 것은 쉬운 문제가 아니다. 최근 무선 신호 분류를 위해 딥러닝 기반의 다양한 학습 기법들이 제안되어졌다. 딥러닝의 경우 훈련 데이터셋이 적을 경우 과대적합에 빠질 가능성이 높으며, 이는 딥러닝 모델을 활용한 무선 신호 분류 기법의 성능 저하를 유발한다. 본 연구에서는 다양한 무선 신호들이 존재할 때 분류 성능을 높이기 위해 생성적 적대 신경망 기반 데이터 증대 기법을 제안한다. 분류해야 하는 무선 신호의 종류가 다양할 때 특정 무선 신호를 나타내는 데이터의 양이 적거나 균형이 맞지 않는 경우 제안한 기법을 활용하여 필요한 무선 신호와 관련된 데이터의 양을 증가시킨다. 제안한 데이터 증강 알고리즘의 유효성을 검증하기 위해 무선 신호의 데이터양을 증가시키고 균형을 맞춘 결과를 바탕으로 CNN 및 LSTM 기반 무선 신호 분류기를 구현하여 실험해본 결과 데이터 균형을 맞추지 않았을 때보다 분류 정확도가 높아지는 것을 확인하였다.

A Semi-Automated Labeling-Based Data Collection Platform for Golf Swing Analysis

  • Hyojun Lee;Soyeong Park;Yebon Kim;Daehoon Son;Yohan Ko;Yun-hwan Lee;Yeong-hun Kwon;Jong-bae Kim
    • 한국컴퓨터정보학회논문지
    • /
    • 제29권8호
    • /
    • pp.11-21
    • /
    • 2024
  • 본 연구는 가상현실 (Virtual Reality, VR) 기술을 활용하여 골프 스윙의 주요 구간을 식별하고 레이블링 (Labeling) 하는 방법을 탐구한다. 기존 가상현실 기기의 제한점을 해결하기 위해 OpenVR SDK (Software Development Kit)와 SteamVR을 활용하여 다양한 VR 기기에서 운동 데이터를 수집할 수 있는 플랫폼을 개발하였다. 또한, 장단기 메모리 (Long Short-Term Memory) 기반의 시계열 데이터 분석을 통해 운동 동작의 시간적 변화를 식별하고 레이블링하는 반자동 레이블링 기술을 개발하였다. 실험은 소년, 청년, 중년, 장년 세대별 각 20명씩 총 80명의 참가자가 각 5회의 스윙 데이터를 수집하여 총 400개의 운동 데이터 세트를 구축하였다. 제안하는 기술은 골프 스윙의 7가지 주요 구간에 대해 모든 연령대에서 일관되게 높은 정확도(0.94 이상)와 F1 점수(0.95 이상)를 달성하였다. 이 기술은 운동 데이터를 세분화하고 구간별로 운동 능력을 정밀하게 평가할 수 있는 기반을 마련하여, 향후 교육 및 훈련 과정에서 개별 사용자에게 맞춤형 피드백을 제공하는 데 목적이 있다.

선도적 농림기상 국제협력을 통한 농업과 식량안보분야 전지구기후 서비스체계 구축 전략 (Implementation Strategy of Global Framework for Climate Service through Global Initiatives in AgroMeteorology for Agriculture and Food Security Sector)

  • 이병열;페데리카 로씨;레이몬드 모타;로버트 스테판스키
    • 한국농림기상학회지
    • /
    • 제15권2호
    • /
    • pp.109-117
    • /
    • 2013
  • "전지구기후서비스체계" (GFCS)는 2009년 제3차 세계기후회의에서 기후변화 대응 취약 국가와 소외계층에 대해 보다 효율적인 기후정보를 제공하기 위한 전지구차원의 서비스 제공체계 구축 필요성에 대한 공감을 바탕으로 제안되어, 현재 세계기싱기구를 중심으로 관련 UN 및 국제기구간 공조를 통해 향후 약 10년 동안에 걸쳐 이를 이행하기 위한 노력을 기울일 예정이다. GFCS는 과학적 기후정보와 기후예측을 기후변화 적응과 기후위기관리를 상호 연계할 수 있는 기후서비스 개발을 주도하게 된다. GFCS의 기본구조는 5개 주요 요소로 구성되어 있는데, 이에는 관측/모니터링, 연구/모형/예측, 기후서비스정보시스템 및 사용자인터페이스 플랫폼과 함께 이들 모두를 포괄하는 역량개발이 포함되어 있다. 현재 GFCS의 편익분야 중 자연재해경감, 수자원, 보건 분야와 함께 농업/식량안보분야가 4대 우선순위에 포함되어 있는데, WMO의 농업기상위원회(CAgM)은 동분야에 대한 GFCS의 효율적 이행을 지원하기 위해 GFCS의 5개 요소별로 이를 보완하기 위한 전구차원 선도적 협력방안(GIAM)을 제안 추진하고 있다. GIAM의 취지는 기존의 기후서비스체계의 개별적 서비스 구조를 통합하거나 미흡한 부분을 보완하는 방법 등 최소한의 추가적인 자원 투입으로 최대 시너지효과를 도출하는데 중점을 두고 있다. 관측분야는 전구생물계절관측협의체 구축, 연구분야는 지역/전구 농림기상 파일롯프로젝트 도출, 기후서비스분야는 기존 농업기상웹서버인 WAMIS의 지역 및 기능 확대, 사용자인터페이스분야는 기존 사이버농업기상협의체를 보완하기 위한 전구 농림기상학술협의체 구축, 그리고 역량개발분야는 전구농림기상교육훈련센터 구축 등이 추진 중에 있으며, 이들간의 유기적인 연동 지원을 위한 조정기구와 지원사무국의 설립도 기상청에 의해 가시화되고 있으며, 효율적인 운영을 위한 새로운 거버넌스도 미국 조지메이슨대를 중심으로 구축 중에 있다. 한편 GIAM의 성공적인 이행을 위해서는 전산자원 인프라 구축이 선행되어야 함으로 현재 WAMIS를 지원하기 위해서 세계기상기구 정보시스템(WIS)의 자료수집/생산센터(DCPC-WAMIS) 구축 및 회원국간 전산자원공유를 위한 클라우드 및 그리드 환경 구축도 기상청과 KISTI/부경대 등의 협조를 얻어 추진 중에 있다, GIAM의 궁극적인 목표의 하나는 차세대 기후변화 대응 농림기상전문가의 양성에 있는데 이를 구현하는 방안으로 회원국의 추천을 받은 후보자를 전구농림기상 교육훈련센터 대학원 과정에 학비/수업료 면제조건으로 입학시킨 후, 지역 파일롯프로젝트에 연구원으로 참여, 이를 통해 생활비 등 지원을 받는 한편 농림기상 학술협의체 회원 활동, 국내외 실무그룹 활동 등을 통해 농림기상분야 국제전문가로 양성함으로써 향후 회원국 농업/식량안보분야 기후변화 대응에 절대적으로 필요한 핵심정책연구 담당자로서의 역할을 기대할 수 있을 것이다.

직원을 위한 내부마케팅이 기업의 시가 총액 변동률에 미치는 영향 분석: 잡플래닛 기업 리뷰를 중심으로 (An Analysis of the Internal Marketing Impact on the Market Capitalization Fluctuation Rate based on the Online Company Reviews from Jobplanet)

  • 최기철;이상용
    • 경영정보학연구
    • /
    • 제20권2호
    • /
    • pp.39-62
    • /
    • 2018
  • 컴퓨터 연산능력의 향상과 데이터를 수집하고 가공해 분석이 가능하도록 데이터를 정형화 시키는 기술이 발달함에 따라, 소셜미디어 및 인터넷 공간에서 생산되는 다양한 텍스트 데이터를 수집하고 그것을 분석하는 시도가 늘고 있다. 본 연구는 이와 같은 기술의 발전과 새롭게 시도되고 있는 분석법을 활용해 텍스트 데이터를 분석하여 과거에 설문조사 방법을 통해 확인했던 "내부마케팅"의 효과를 기존과는 다른 방식으로 확인해 보고자 하였다. 이와 같은 분석을 위해, 전/현직자들이 해당 기업의 구직자들에게 기업의 리뷰를 제공하는 플랫폼 잡플래닛(www.jobplanet.co.kr)의 리뷰 데이터를 웹크롤러를 생성하여 약 4만 건을 수집하였다. 또한 수집된 비정형 데이터를 정형화하기 위한 형태소 분석을 진행하여 명사만을 추출한 후, 미리 생성해 놓은 단어주머니에 들어있는 단어와 같을 경우 그 숫자를 세어 분류화를 진행하였다. 분류화된 내부마케팅 영역별 단어 수의 변화를 독립변수로, 시가총액 변동률을 종속변수로 활용하여, 내부마케팅과 시가총액간의 관계를 확인하고자 하였다. 그 결과, 대부분의 기존 연구와는 다르게 내부마케팅의 효과는 제한적인 영역에서만 기업의 성과에 긍정적인 영향을 미치며 대부분의 환경에서는 음의 영향을 미치는 것으로 나타났다. 산업군으로 나누었을 때, 제조업에서는 여성지원과 교육 훈련 부문에서 기업성과에 긍정의 영향을 미치는 것으로 나타났으나, 유통업에서는 직원 복지, 일-가정 양립 그리고 바이오/제약 업종에서는 직원 복지, 일-가정 양립, 사내 커뮤니케이션 그리고 보상 부문에서 모두 기업성과에 음의 영향을 미치는 것으로 나타났다. 또한 기업의 규모가 크고 역사가 오래된 기업에서는 직원 복지가 기업성과에 악영향을 미치는 것으로 나타났으나, 교육 훈련 부문에서는 종속변수에 긍정적 영향을 미치는 것을 확인할 수 있었으며, 기업의 규모가 작고 역사가 짧은 기업에서는 직원 복지, 사내 커뮤니케이션 그리고 일-가정 양립에서 종속변수와 음의 관계를, 여성지원 에서는 종속변수와 양의 관계를 갖는 것으로 나타났다. 본 연구는 이러한 결과들을 분석하여 이론적 의미뿐만 아니라, 실무적 함의를 제시하고자 하였다.

기계학습을 이용한 광학 위성 영상 기반의 도시 내 수목 피복률 추정 (Estimation of Fractional Urban Tree Canopy Cover through Machine Learning Using Optical Satellite Images)

  • 배세정;손보경;성태준;이연수;임정호;강유진
    • 대한원격탐사학회지
    • /
    • 제39권5_3호
    • /
    • pp.1009-1029
    • /
    • 2023
  • 도시 수목은 탄소를 저장하고 불투수면적을 감소시키는 도시 생태계의 중요 요소이며, 탄소 저장량 및 순환량 산정 시 주요 정보로 활용될 수 있다. 많은 선행 연구에서 항공 라이다 자료 및 인공지능 기법을 활용하여 고해상도 수목 정보를 산출하고 있으나, 항공 라이다 영상은 제공하는 플랫폼이 제한되어 있으며 비용적인 면에서도 한계가 다수 존재한다. 따라서 본 연구에서는 수원시를 대상으로 자료 취득이 용이한 고해상도 위성 영상인 Sentinel-2를 활용하여 기계학습 기반의 도시 내 수목 피복률(fractional tree canopy cover, FTC)을 추정하고자 하였다. Sentinel-2 시계열 영상으로부터 중앙값 합성을 수행하여 수원시 전역에 대한 단일 영상을 제작하여 활용하였다. 도시 내 토지 피복의 이질성을 반영하기 위하여, 30 m 격자내 10 m 해상도의 광학 지수의 평균 및 표준편차 값과 환경부 세분류 토지 피복 지도 기반 항목별 피복률을 계산하여 기계학습 모델의 입력 변수로 활용하였다. 총 4가지의 입력 변수 조합을 설정하여, 입력 변수 구성에 따른 FTC 추정 정확도를 비교 및 평가하였다. 광학 영상의 평균 정보만을 활용(Scheme 1)했을 때 보다 도시 내 이질적인 특성을 반영할 수 있는 표준 편차 및 피복률 정보를 모두 함께 고려(Scheme 4, S4)했을 때 향상된 성능을 나타낼 수 있었다. 검증용 자료에 대해 S4의 Random Forest (RF) 모델이 0.8196의 R2, 0.0749의 mean absolute error (MAE), 및 0.1022의 root mean squared error (RMSE)로 전체 기계학습 모델 중에서 성능이 가장 높게 나타났다. 변수 기여도 분석 결과 광학 지수의 표준 편차 정보는 도시 내 복잡한 토지 피복 지역에 대해 높은 기여도를 나타내었다. 훈련된 S4 구성의 RF 모델을 수원시 전역에 대해 확장 적용하였을 때, 참조 FTC 자료에 대해 0.8702의 R2, 0.0873의 MAE, 및 0.1335의 RMSE의 우수한 성능을 나타냈다. 본 연구의 FTC 추정 기법은 향후 다른 지역에 대한 적용성이 우수할 것으로 판단되며, 도시 생태계 탄소순환 파악의 기초자료로 활용될 수 있을 것으로 기대된다.