• 제목/요약/키워드: 훈련자료

검색결과 960건 처리시간 0.029초

시계열 토지피복도 제작을 위한 준감독학습 기반의 훈련자료 자동 추출 (Automatic Extraction of Training Data Based on Semi-supervised Learning for Time-series Land-cover Mapping)

  • 곽근호;박노욱
    • 대한원격탐사학회지
    • /
    • 제38권5_1호
    • /
    • pp.461-469
    • /
    • 2022
  • 이 연구에서는 시계열 토지피복도를 제작하기 위해 분석자 개입 없이 준감독학습 기반 분류를 이용하는 새로운 훈련자료 추출 기법을 제안하였다. 준감독학습 기반 훈련자료 추출 기법은 먼저 분류 대상 영상과 유사한 토지피복 특성을 포함하는 과거 영상으로부터 획득한 초기 훈련자료를 이용하여 초기 분류를 수행한다. 이후, 분류의 불확실성 정보와 인접 화소의 분류 항목을 제약 조건으로 이용하는 준감독학습 기반 반복 분류를 이용하여 초기 분류 결과로부터 신뢰할 수 있는 훈련자료를 추출한다. 준감독학습 기반 훈련자료 추출기법의 적용 가능성은 농경지에서 unmanned aerial vehicle 영상을 이용하는 분류 실험을 통해 평가되었다. 제안한 준감독학습 기반 훈련자료 추출 기법에 의해 자동으로 추출된 새로운 훈련자료를 이용하는 것은 초기 분류 결과에서 나타난 오분류를 두드러지게 완화할 수 있었다. 특히, 인접 화소의 공간 문맥 정보를 고려함으로써 고립된 화소가 크게 감소하였다. 결과적으로, 제안 기법의 분류 정확도는 수동으로 추출한 훈련자료를 이용하는 분류 정확도와 유사하였다. 이러한 결과는 이 연구에서 제시한 준감독학습 기반 반복 분류가 시계열 토지피복도를 제작하기 위해 신뢰할 수 있는 훈련자료를 자동으로 추출하는데 효과적으로 적용될 수 있음을 나타낸다.

역학적 모델과 딥러닝 모델을 결합한 저수지 수온 및 수질 예측 (Predicting water temperature and water quality in a reservoir using a hybrid of mechanistic model and deep learning model)

  • 김성진;정세웅
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2023년도 학술발표회
    • /
    • pp.150-150
    • /
    • 2023
  • 기작기반의 역학적 모델과 자료기반의 딥러닝 모델은 수질예측에 다양하게 적용되고 있으나, 각각의 모델은 고유한 구조와 가정으로 인해 장·단점을 가지고 있다. 특히, 딥러닝 모델은 우수한 예측 성능에도 불구하고 훈련자료가 부족한 경우 오차와 과적합에 따른 분산(variance) 문제를 야기하며, 기작기반 모델과 달리 물리법칙이 결여된 예측 결과를 생산할 수 있다. 본 연구의 목적은 주요 상수원인 댐 저수지를 대상으로 수심별 수온과 탁도를 예측하기 위해 기작기반과 자료기반 모델의 장점을 융합한 PGDL(Process-Guided Deep Learninig) 모델을 개발하고, 물리적 법칙 만족도와 예측 성능을 평가하는데 있다. PGDL 모델 개발에 사용된 기작기반 및 자료기반 모델은 각각 CE-QUAL-W2와 순환 신경망 딥러닝 모델인 LSTM(Long Short-Term Memory) 모델이다. 각 모델은 2020년 1월부터 12월까지 소양강댐 댐 앞의 K-water 자동측정망 지점에서 실측한 수온과 탁도 자료를 이용하여 각각 보정하고 훈련하였다. 수온 및 탁도 예측을 위한 PGDL 모델의 주요 알고리즘은 LSTM 모델의 목적함수(또는 손실함수)에 실측값과 예측값의 오차항 이외에 역학적 모델의 에너지 및 질량 수지 항을 제약 조건에 추가하여 예측결과가 물리적 보존법칙을 만족하지 않는 경우 penalty를 부가하여 매개변수를 최적화시켰다. 또한, 자료 부족에 따른 LSTM 모델의 예측성능 저하 문제를 극복하기 위해 보정되지 않은 역학적 모델의 모의 결과를 모델의 훈련자료로 사용하는 pre-training 기법을 활용하여 실측자료 비율에 따른 모델의 예측성능을 평가하였다. 연구결과, PGDL 모델은 저수지 수온과 탁도 예측에 있어서 경계조건을 통한 에너지와 질량 변화와 저수지 내 수온 및 탁도 증감에 따른 공간적 에너지와 질량 변화의 일치도에 있어서 LSTM보다 우수하였다. 또한 역학적 모델 결과를 LSTM 모델의 훈련자료의 일부로 사용한 PGDL 모델은 적은 양의 실측자료를 사용하여도 CE-QUAL-W2와 LSTM 보다 우수한 예측 성능을 보였다. 연구결과는 다차원의 역학적 수리수질 모델과 자료기반 딥러닝 모델의 장점을 결합한 새로운 모델링 기술의 적용 가능성을 보여주며, 자료기반 모델의 훈련자료 부족에 따른 예측 성능 저하 문제를 극복하기 위해 역학적 모델이 유용하게 활용될 수 있음을 시사한다.

  • PDF

과학화 전투훈련 신뢰성 제고를 위한 자료검증 방법

  • 문형곤;유승근
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2002년도 춘계학술대회논문집
    • /
    • pp.123-123
    • /
    • 2002
  • 부대기동 및 실사격을 적용한 군사훈련이 가장 사실적이며 현실감이 있지만, 부대기동에 따른 교통체증 유발과 실사격 훈련에 대한 민원 증가로 인하여 실기동에 의한 군사훈련을 실시하기에는 많은 어려움이 있다. 그러므로 실사격 훈련의 제한 및 통제형 선형훈련으로 인하여 현장감이 저하되고 학습효과가 상대적으로 떨어지게 되는 단점을 극복하기 위하여, 미국, 영국, 독일, 프랑스 등 군사선진국들은 실전적 훈련묘사 및 정밀 훈련분석이 가능한 과학화 전투훈련장을 구축하여 군사훈련의 성과를 높이고 있다. 국내에서도 육군 과학화 전투훈련장(KCTC) 구축사업이 현재 진행중에 있다. 과학화 전투훈련은 일반적으로 마일즈 장비와 시뮬레이션을 사용하여, 지휘/통제/통신 및 기동, 전투근무 지원에 이르는 군사훈련 전과정을 모의하며, 직/곡사화기 교전, 화학 및 지뢰지대 운용, 항공지원 등 전투과정을 재현함으로써 훈련에 참여하는 지휘관과 병사로 하여금 현장감 있는 전투훈련을 유도한다. 이러한 과학화 전투훈련이 실제 훈련과 동일한 훈련효과를 창출하기 위해서는, 신뢰성 있는 교전 피해평가가 필요하다. 예를 들어, 곡사화기에 의한 살상범위, 피해정도 등이 실무부대 전투결과들과 큰 차이가 발생하면 소기의 훈련목적을 달성할 수 없다. 본 고는 과학화 전투훈련장의 전투피해평가 자료체계에 대한 객관적이고 신뢰성 있는 자료검증방법을 제시하여, 향후 과학화 전투훈련의 신뢰성 제고에 기여하고자 한다.

  • PDF

국가토지피복도와 무감독분류를 이용한 초기 훈련자료 자동추출과 토지피복지도 갱신 (Automatic Extraction of Initial Training Data Using National Land Cover Map and Unsupervised Classification and Updating Land Cover Map)

  • 이승기;최석근;노신택;임노열;최주원
    • 한국측량학회지
    • /
    • 제33권4호
    • /
    • pp.267-275
    • /
    • 2015
  • 토지피복지도는 환경, 군사, 의사결정 등 다양한 분야에서 널리 사용되고 있다. 본 연구에서는 단일 위성영상과 환경부에서 제공하는 국가토지피복도를 이용하여 훈련자료를 자동으로 추출하고, 이를 활용하여 피복을 분류하는 방법을 제안하였다. 이를 위하여 초기 훈련자료는 무감독분류인 ISODATA와 기존 토지피복도를 이용하였으며, 무감독 분류 사용시 각 클래스별 분류 선정과 클래스 명명, 감독분류에서 훈련자료 선정 등의 문제점을 해결하기 위하여 기존 토지피복도의 클래스 정보를 활용하여 자동으로 클래스를 분류하고 명명하였다. 추출된 초기 훈련자료는 대상 위성영상의 토지피복분류를 위하여 MLC의 훈련자료를 활용하였고, 피복분류의 정확도 향상을 위하여 반복방법을 적용하여 훈련자료를 갱신하였으며 최종적으로 토지피복지도를 추출하였다. 또한, 화소분류방법에서 발생하는 salt and pepper를 감소시키기 위하여 각 반복단계별 MRF를 적용하여 분류정확도를 향상시켰다. 본 연구에서 제안된 방법을 대상지역에 적용한 결과 효과적으로 토지피복지도를 생성할 수 있음을 정량적, 시각적으로 확인하였다.

계절내-계절 기후예측의 딥러닝 기반 후보정을 위한 입력자료 전처리 기법 평가 (Investigating Data Preprocessing Algorithms of a Deep Learning Postprocessing Model for the Improvement of Sub-Seasonal to Seasonal Climate Predictions)

  • 정유란;이진영;김미애;손수진
    • 한국농림기상학회지
    • /
    • 제25권2호
    • /
    • pp.80-98
    • /
    • 2023
  • 본 연구에서는 계절내-계절(Subseasonal to seasonal, S2S) 기후예측의 주별 예측 성능을 개선하기 위해서 딥러닝 기반의 후보정(post processing) 기술을 개발하였다. 그 첫 단계로, 일 최고, 최저기온과 일 강수를 목표 변수로, 자료의 특성과 분포에 적합한 자료 변환 및 특성 공학 기법을 규명하고자 하였다. 먼저, 6개 개별 기후모델의 S2S 예측 자료를 딥러닝 모델에 입력하기 위한 훈련자료로 변환하고, 이로부터 다중모델앙상블(Multi-Model Ensemble, MME) 기반 훈련자료를 구축하였다. 참값(label)으로는 ECMWF의 ERA5 재분석 자료를 사용하였다. 자료 변환 알고리즘은 최고 및 최저 차이를 계산하여 입력자료의 범위를 변형시키는 MinMax 및 MaxAbs 변환, 표준편차를 이용하는 Standard 변환 및 분위수를 지정하여 변형하는 Robust와 Quantile 변환으로 구성된 전처리 파이프라인을 구축하였으며, 변환된 훈련자료와 예측 변수와의 상관관계를 계산하여 순위에 따라 훈련자료의 특성을 선택하는 특성 선택 기법을 추가하였다. 본 연구는 U-Net 모델에 TimeDistributed wrapper를 모든 합성곱 층(convolutional layer)에 적용하여 활용하였다. 5개 알고리즘으로부터 변환된 6개 개별 기후모델 및 MME S2S 훈련자료(일 최고 및 최저기온, 강수)에 훈련 모델을 적용한 결과와 훈련 모델을 적용하지 않은 결과를 ERA5와의 공간상관계수(spatial Pattern Correlation Coefficient)를 계산하고 그 개선율인 기술 점수(skill score)를 평가한 결과, 일 강수의 PCC 기술 점수는 Standard 및 Robust 변환으로 처리된 것에서 전체 예측선행(1~4주)에 대해 모두 높았고, 일 최고 및 최저기온에서는 예측 선행시간 3~4주에서만 높게 나타났다. 또한, 일 강수에서 특성 선택에 따른 훈련자료의 차원 감소가 예측 성능 변화에 영향을 미치지 않는 것으로 나타났다. 일 최고 및 최저기온의 경우에는 특성 선택에 의한 훈련자료의 특성 정보 감소가 오히려 예측 성능을 저하시킬 수 있는 것으로 확인되었으며, 원시자료에서 예측성이 높은 1~2주 기온 예측 개선을 위한 적합한 전처리 변환 알고리즘이나 특성 선택을 찾을 수 없었다. 후속 연구에서는 원시 예측 성능이 강수에 비해 높으나 딥러닝 훈련 모델에 의한 후보정 효과가 미미한 예측 선행 1~2주 기온 예측의 저조 원인에 대해 탐색하고, 다양한 딥러닝 훈련 모델로의 적용 및 초매개변수 조정 등 학습 과정의 최적화를 통해 S2S 기후 예측 성능을 개선하고자 한다.

지상 분광반사자료를 훈련샘플로 이용한 감독분류의 정확도 평가: 세종시 금남면을 사례로 (Accuracy Assessment of Supervised Classification using Training Samples Acquired by a Field Spectroradiometer: A Case Study for Kumnam-myun, Sejong City)

  • 신정일;김익재;김동욱
    • 대한공간정보학회지
    • /
    • 제24권1호
    • /
    • pp.121-128
    • /
    • 2016
  • 많은 연구들에서 영상자료와 분류 알고리즘 측면에서 분류정확도를 비교하였지만, 참조자료 또는 분석자에 의존하는 훈련샘플에 의한 분류정확도 비교와 관련된 연구는 부족한 실정이다. 본 연구는 감독분류에 있어 훈련샘플로써 지상 분광반사자료의 유용성을 평가하고자 하였다. 이를 위하여 초분광영상과 다중분광영상을 대상으로 영상 수집 훈련샘플과 지상 분광반사자료를 사용하여 분류 정확도를 비교하였다. 그 결과 영상 수집 훈련샘플 사용 시 초분 광영상과 다중분광영상에서 공통적으로 약 90%의 분류정확도를 얻을 수 있었다. 그러나 지상 분광반사자료를 훈련 샘플로 사용하면 초분광영상의 경우 약 10%p, 다중분광영상의 경우 약 20%p의 분류정확도 감소가 발생하였다. 특히 다중분광영상에서 분광반사특성이 유사하게 나타나는 클래스들의 경우 분류정확도가 초분광영상에 비해 매우 낮게 나타났다. 따라서 지상 분광반사자료는 다중분광영상에 적용하는 데에는 한계가 있지만, 초분광영상을 이용한 토지피복분류에 있어 유용한 훈련샘플이 될 수 있다.

다중 댐 유역에 대한 강우예측모델 개발을 위한 전이학습 기법의 적용 (Application of transfer learning to develop radar-based rainfall prediction model with GAN(Generative Adversarial Network) for multiple dam domains)

  • 최수연;김연주
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.61-61
    • /
    • 2022
  • 최근 머신러닝 기술의 발달에 따라 이를 활용한 레이더 자료기반 강우예측기법이 활발히 개발되고 있다. 기존 머신러닝을 이용한 강우예측모델 개발 관련 연구는 주로 한 지역에 대해 수행되며, 데이터 기반으로 훈련되는 머신러닝 기법의 특성상 개발된 모델이 훈련된 지역에 대해서만 좋은 성능을 보인다는 한계점이 존재한다. 이러한 한계점을 해결하기 위해 사전 훈련된 모델을 이용하여 새로운 데이터에 대해 모델을 훈련하는 전이학습 기법 (transfer learning)을 적용하여 여러 유역에 대한 강우예측모델을 개발하고자 하였다. 본 연구에서는 사전 훈련된 강우예측 모델로 생성적 적대 신경망 기반 기법(Generative Adversarial Network, GAN)을 이용한 미래 강우예측모델을 사용하였다. 해당 모델은 기상청에서 제공된 2014년~2017년 여름의 레이더 이미지 자료를 이용하여 초단기, 단기 강우예측을 수행하도록 학습시켰으며, 2018년 레이더 이미지 자료를 이용한 단기강우예측 모의에서 좋은 성능을 보였다. 본 연구에서는 훈련된 모델을 이용해 새로운 댐 유역(안동댐, 충주댐)에 대한 강우예측모델을 개발하기 위해 여러 전이학습 기법을 적용하고, 그 결과를 비교하였다. 결과를 통해 새로운 데이터로 처음부터 훈련시킨 모델보다 전이학습 기법을 사용하였을 때 좋은 성능을 보이는 것을 확인하였으며, 이를 통해 여러 댐 유역에 대한 모델 개발 시 전이학습 기법이 효율적으로 적용될 수 있음을 확인하였다.

  • PDF

하천수위표지점에서 신경망기법을 이용한 홍수위의 예측 (The Flood Water Stage Prediction based on Neural Networks Method in Stream Gauge Station)

  • 김성원;호세살라스
    • 한국수자원학회논문집
    • /
    • 제33권2호
    • /
    • pp.247-262
    • /
    • 2000
  • 본 연구에서는 낙동강유역의 주요 수위표지점중 진동수위표지점에서 홍수위를 예측하기위한 신경망모형인 WSANN모형이 제시되었다. WSANN모형은 모멘트방법, 초기조건의 개선 및 적응학습속도에 의해 보완되어진 개선된 역전파훈련 알고리즘을 이용하였고, 본 연구에 사용된 자료는 훈련자료와 테스팅자료로 분할하였으며, 최적 은닉층 노드수를 결정하기 위하여 은닉층노드와 임계학습횟수로부터 경험식이 유도되었다. 그리고 WSANN모형의 보정은 4개의 훈련자료에 의해 실시되었으며, WSANN22와 WSANN32모형이 모델의 검증에 사용될 최적모형으로 결정되었다. 모형의 검증은 훈련되지 않은 2개의 테스팅자료를 이용하여 모형의 적합성을 평가하기 위하여 이루어 졌으며, 통계분석의 결과를 통하여 홍수위를 합리적으로 예측하는 것으로 나타났다. 따라서 본 연구의 결과를 기본으로 신경망기법을 이용한 실시간 홍수예경보 시스템의 구축 및 홍수위의 제어에 관한 지속적인 연구가 필요것으로 사료된다.

  • PDF

데이터마이닝 기법을 이용한 주가자료 분석

  • 손인석;황창하;조길호;김태윤
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2001년도 추계학술발표회 논문집
    • /
    • pp.99-104
    • /
    • 2001
  • 본 연구의 주된 목표는 1997년 주가자료를 데이터마이닝 기법인 로지스틱모형, 의사결정트리, 신경망, SVM(support vector machine), 뉴로퍼지모형을 사용하여 분석한 후 우리나라 경제상황을 진단하고 예측하는데 가장 적합한 모형을 찾고 그 모형을 해석하는데 있다. 1997년 주가자료를 훈련자료로 간주하여 그 당시 경제 상황에 따라 적절한 구간으로 나누고 훈련시킨 결과 중요한 변수로는 주가지수, 등락률 10일 이동분산, 10일 이동분산의 변동비로 나타났으며 적절한 기법으로는 의사결정트리, 신경망, SVM임을 알 수 있다. 1997년 이외의 주가자료를 데이터마이닝 기법(신경망, 의사결정트리, SVM)에 적용한 결과, 우리나라 경제상황을 고려해 볼 때 신경망이 가장 정확도가 좋은 기법으로 보여진다.

  • PDF

계급불균형자료의 분류: 훈련표본 구성방법에 따른 효과 (Classification of Class-Imbalanced Data: Effect of Over-sampling and Under-sampling of Training Data)

  • 김지현;정종빈
    • 응용통계연구
    • /
    • 제17권3호
    • /
    • pp.445-457
    • /
    • 2004
  • 두 계급의 분류문제에서 두 계급의 관측 개체수가 심하게 불균형을 이룬 자료를 분석할 때, 흔히 인위적으로 두 계급의 크기를 비슷하게 해준 다음 분석한다. 본 연구에서는 이런 훈련표본 구성방법의 타당성에 대해 알아보았다. 또한 훈련표본의 구성방법이 부스팅에 미치는 효과에 대해서도 알아보았다. 12개의 실제 자료에 대한 실험 결과 나무모형으로 부스팅 기법을 적용할 때는 훈련표본을 그대로 둔 채 분석하는 것이 좋다는 결론을 얻었다.