• 제목/요약/키워드: 후보 클러스터링

검색결과 55건 처리시간 0.03초

최적합 객체 선정을 위한 선 클러스터링 알고리즘 (Pre-Clustering Algorithm for Selecting Optimal Objects)

  • 장주현;노희영
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.901-903
    • /
    • 2005
  • 본 논문에서는 절차 중심 소프트웨어를 객체 지향 소프트웨어로 재/역공학기 위한 다단계 절차 중 객체 추출 단계에서 선 클러스터링을 통해 불필요한 정제 결합단계를 축소하고, 영역 전문가의 선택으로 영역모델링에 가장 가까운 객체 후보군을 제시하는 알고리즘을 제안하고자 한다. 기존의 연구에서는 영역 모델링과 다중 객체 후보군과의 유사도를 측정하여 영역 전문가에게 최적합 후보를 선택할 수 있는 측정 결과를 제시하였다. 하지만 영역 전문가가 제시하는 영역 모델링이 존재한다면 정제 결합단계이전에 최대한의 선 클러스터링을 통해서 영역 모델링과 가장 유사한 통합 객체를 제시할 수 있고, 정제 결합 단계를 선 클러스터링을 통해서 축소할 수 있으며 이를 통해서 객체 후보군과 영역모델링의 유사도를 향상 시키며 클러스터링에 따른 시간과 공간을 절약할 수 있다. 따라서 본 논문에서는 영역 모델링과 사용자의 함수, 전역변수의 선택을 통해 영역 모델링에 가장 유사한 객체 후보군을 찾는 선 클러스터링 알고리즘 제안 하고자 한다.

  • PDF

고차원 데이터에서 점진적 프로젝션을 이용한 클러스터링 (A Clustering using Incremental Projection for High Dimensional Data)

  • 이혜명;박영배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2000년도 가을 학술발표논문집 Vol.27 No.2 (1)
    • /
    • pp.189-191
    • /
    • 2000
  • 데이터 마이닝의 방법론 중 클러스터링은 데이터베이스 객체들의 에트리뷰트 값에 근거하여 유사한 그룹으로 식별하는 기술적인 작업이다. 그러나 대부분 알고리즘들은 데이터의 차원이 증가할수록 형성된 전체 데이터 공간은 매우 방대하므로 의미있는 클러스터의 탐색이 더욱 어렵다. 따라서 효과적인 클러스터링을 위해서는 클러스터가 포함될 데이터 공간의 예측이 필요하다. 본 논문에서는 고차원 데이터에서 각 차원에 대한 점진적 프로젝션을 이용한 클러스터링 방법을 제안한다. 제안한 방법에서는 클러스터가 포함될 가능성이 있는 데이터공간의 후보영역을 결정하여, 이 영역에서 점들의 평균값을 중심으로 클러스터를 탐색한다.

  • PDF

DBSCAN과 FCM 기반 2-Layer 클러스터링을 이용한 초음파 영상에서의 결절종 추출 (Extracting Ganglion in Ultrasound Image using DBSCAN and FCM based 2-layer Clustering)

  • 박태언;송재욱;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2021년도 추계학술대회
    • /
    • pp.186-188
    • /
    • 2021
  • 본 논문에서는 초음파 영상에서 DBSCAN(Density-based spatial clustering of applications with noise)과 FCM 클러스터링 기반 양자화 기법을 적용하여 결절종을 추출하는 방법을 제안한다. 본 논문에서는 초음파 영상 촬영 시 좌우 상단의 지방층 영역과 하단 영역의 명암도가 어두운 영역을 잡음 영역으로 설정한다. 그리고 초음파 영상에 퍼지스트레칭 기법을 적용하여 잡음 영역을 최대한 제거 한 후에 ROI 영역을 추출한다. 추출된 ROI 영역에서 밀도 분포를 분석하기 위하여 히스토그램을 분석한 후에 DBSCAN을 적용하여 초음파 영상에서 결절종 후보에 해당되는 명암도를 추출한다. 추출한 후보 명암도를 대상으로 FCM 클러스터링 기법을 적용한다. FCM을 적용하는 단계에서 결절종의 저에코 혹은 무에코의 특징을 이용하여 클러스터 중심 값이 가장 낮은 클러스터를 양자화 한 후에 라벨링 기법을 적용시켜 결절종의 후보 객체를 추출한다. 제안된 결절종 추출 방법의 성능을 분석하기 위해 전문의가 결절종 영역을 표기한 초음파 영상과 표기되지 않은 초음파 영상 120쌍을 대상으로 DBSCAN, FCM, 그리고 제안된 방법 간의 성능을 비교 분석하였다. 제안된 방법에서는 120개의 초음파 영상에서 106개 결절종 영역이 추출되었고 FCM 기법에서는 80개가 추출되었고 DBSCAN에서는 36개가 추출되었다. 따라서 제안된 방법이 결절종 추출에 효율적인 것을 확인하였다.

  • PDF

K-means 클러스터링을 이용한 불변 방향 검출 (Detection of an Invariant Direction using K-means Clustering)

  • 김달현;이우람;전병민
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2011년도 춘계학술논문집 1부
    • /
    • pp.389-392
    • /
    • 2011
  • 본 논문에서는 영상의 색 항등성을 달성하기 위해 본질 영상의 핵심인 불변 방향을 K-means 클러스터링을 이용해 검출하는 개선된 알고리즘을 제안한다. 우선, RGB 영상을 K-means 클러스터링 기법에 의해 다수의 클러스터로 분할한다. 이 때, 클러스터 간의 거리 측정은 유클리드 거리이다. 그리고 분할된 클러스터 중 가장 많은 색을 가진 클러스터만을 x-색도 공간으로 도시하여 해당되는 후보 불변 방향을 계산한다. 검출된 후보 불변 방향은 방향별로 프로젝션된 히스토그램에서 3개 이상의 프로젝션된 데이터를 가진 bin들의 개수가 가장 적은 방향이다. 그 후, 분할된 다른 여러 클러스터에 해당되는 후 보 불변 방향을 계산하여 가장 많은 빈도로 나타나는 방향을 영상의 최종 불변 방향으로 결정한다. 실험에서 Ebner에 의해 제안된 데이터집합을 실험 영상으로 사용하였고, 색항등성 측도를 평가 척도로 사용하였다. 실험 결과, 제안한 기법은 형광성 표면을 가진 형광 데이터집합에 보다 적합하였으며, 엔트로피 기법보다 색항등성이 1.5배 이상 높았다.

  • PDF

클러스터링을 이용한 효율적인 대규모 베이지안 망 학습 방법 (An Efficient Learning Method for Large Bayesian Networks using Clustering)

  • 정성원;이광형;이도헌
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.700-702
    • /
    • 2005
  • 본 논문에서는 대규모 베이지안 망을 빠른 시간 안에 학습하기 위한 방법으로, 클러스터링을 이용한 방법을 제안한다. 제안하는 방법은 베이지안 구조 학습에 있어서 DAG(Directed Acyclic Graph)를 탐색하는 영역을 제한하기 위해 클러스터링을 사용한다. 기존의 베이지안 구조 학습 방법들이 고려하는 후보 DAG의 수가 전체 노드 수에 의해 제한되는 데 반해, 제안되는 방법에서는 미리 정해진 클러스터의 최대 크기에 의해 제한된다. 실험 결과를 통해, 제안하는 방법이 기존의 대규모 베이지안 망 학습에 활용되었던 SC(Sparse Candidate) 방법 보다 훨씬 적은 수의 후보 DAG만을 고려하였음에도 불구하고, 비슷한 정도의 정확도를 나타냄을 보인다.

  • PDF

클러스터링과 차원축약 기법을 통합한 영상 검색 시스템 (Combined Image Retrieval System using Clustering and Condensation Method)

  • 이세한;조정원;최병욱
    • 전자공학회논문지CI
    • /
    • 제43권1호
    • /
    • pp.53-66
    • /
    • 2006
  • 본 논문에서는 전체 차원으로 데이터베이스 내의 모든 영상에 대해 순차적인 검색을 했을 때의 상세 검색 결과와 동일한 적합성을 유지하면서 검색 속도를 훨씬 더 향상시킬 수 있는 통합 검색 시스템을 제안한다. 통합 검색 시스템은 적합성을 유지하는 서로 다른 두 독립적인 시스템이 병합되어 있다. 하나는 특징 벡터 차원 축약을 이용한 2단계 검색 시스템이고 나머지 하나는 이진 트리 클러스터링을 이용한 2단계 검색 시스템이다. 각각의 방법은 1단계에서 상세 검색에서의 검색 결과를 항상 포함하는 후보 영상들을 추출하고, 추출된 후보 영상들을 대상으로 2단계 검색에서 전체 차원으로 재 검색을 한다 그러므로 각 방법과 통합 검색 방법은 모두 상세 검색을 수행했을 때와 동일한 검색 결과를 얻게 된다. 특징 벡터 차원 축약을 이용한 2단계 검색 방법은 Cauchy- Schwartz 부등식의 성질을 이용하여 특징 벡터를 차원 축약하여 검색에 사용하는 방법이다. 이때 전체 검색 시간을 최소로 하는 최적 차원 축약율이 존재하게 되고, 이를 후보 영상 추출을 위한 1차 검색에 적용하게 된다. 이진 트리 클러스터링을 이용한 2단계 검색 방법은 재귀적인 2-means 클러스터링을 통해 각 클러스터의 반경이 동일하게 동적으로 분할하는 방법이다. 동일한 적합성 유지를 위해 유사도 기준이 보정된 질의를 통해 1단계 검색에서 후보 클러스터를 추출하고, 2단계 검색에서 후보 클러스터 내의 영상을 대상으로 최종 결과 영상들을 얻게 된다. 통합 검색 방법은 위의 두 검색 방법을 통합한 것으로 서로 독립적인 두 방법을 동시에 적용함으로써 검색 시스템의 성능을 훨씬 더 향상시킬 수 있다 제안하는 방법은 상세 검색의 적합성을 유지하면서도 검색 속도를 훨씬 더 향상시킬 수 있음이 실험을 통해 입증되었다.

컬러 인접성과 클러스터링 기법을 이용한 객체 기반 영상 검색 (Object-Based Image Retrieval Using Color Adjacency and Clustering Method)

  • 이형진;박기태;문영식
    • 정보처리학회논문지B
    • /
    • 제12B권1호
    • /
    • pp.31-38
    • /
    • 2005
  • 본 논문은 컬러 인접성과 클러스터링 기법을 이용한 객체 기반 영상 검색 기법을 제안한다. 컬러 인접성이란 영상내의 서로 이웃한 영역에서 나타나는 컬러의 특징값을 말하고, 영상 데이터베이스로부터 사용자가 찾고자하는 영역과 유사한 후보 영역들을 우선 추출하는데 사용된다. 또한 클러스터링 기법은 후보 영역들 가운데 객체가 존재하는 영역만을 추출하는데 사용되고, 질의 영상과 데이터베이스 영상 사이의 유사도 측정을 위하여 히스토그램 인터섹션(histogram intersection) 방법이 사용된다. 제안하는 방법에서 사용되는 영상의 컬러쌍 정보는 객체의 이동, 회전 그리고 크기 변화에 강건하며, 실험을 통하여 제안하는 방법이 기존의 방법보다 우수함을 확인하였다.

Alignment Marker 고속 인식 및 위치 보정 방법 (A Fast Way for Alignment Marker Detection and Position Calibration)

  • 문창배;김현수;김현용;이동원;김태훈;정해;김병만
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제5권1호
    • /
    • pp.35-42
    • /
    • 2016
  • 얼라인(Align) 보정은 제품 생산 전/후 빈번하게 사용되는 머신비전 기술 중 하나이다. 본 논문에서는 생산품에 각인된 마커(Marker) 또는 생산품에 존재하는 유니크한 패턴을 이용하여 생산품의 각도와 위치를 고속으로 판별하고 보정하는 방법을 제안하였다. 본 논문에서 사용한 방법은 템플릿매칭(Template Matching)의 속도를 개선한 적분 히스토그램(Integral Histogram)의 변형을 이용하여 후보들을 추출하고, 클러스터링을 적용하여 후보들을 축소하는 방법을 적용 후 마커의 각도와 위치를 판별하는 방법을 제안하였다. 실험결과, 클러스터링을 적용하기 전 보다 클러스터링을 적용 후 약 5s 719ms 개선된 것을 알 수 있었고, 각도 판별에서도 우수한 성능을 보임을 확인할 수 있었다.

절차지향 소프트웨어로부터 클래스와 상속성 추출 (Extraction of Classes and Inheritance from Procedural Software)

  • 최정란;이철;이연식;이문근
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 봄 학술발표논문집 Vol.28 No.1 (A)
    • /
    • pp.592-594
    • /
    • 2001
  • 본 논문은 절차지향 소프트웨어로부터 클래스와 상속성을 추출하기 위한 방법론을 제안한다. 본 논문에서 제안한 방법론은 모든 경우의 클래스 후보군과 그들의 상속성을 생성하여 클래스 후보군과 영역 모델 사이의 관계성과 유사 정도를 가지고 최고 또는 최적의 클래스 후보군을 선택하는데 초점을 둔다. 클래스와 상속성 추출 방법론은 다음과 같은 두드러진 특징을 가지고 있다: 정적(속성)과 동적(메소드)인 클러스터링 방법을 사용하고, 클래스 후보군의 경우는 추상화에 초점을 두며, m개의 클래스 후보와 n개의 클래스 후보 사이의 상속 관계의 유사도 측정 즉, 2차원적 유사도 측정은 m개의 클래스 후보와 n개의 클래스 후보 사이의 전체 그룹에 대한 유사도를 구하는 수평적 측정과 클래스 후보군들에서 상속성을 가진 클래스의 집합과 영역 모델에서 같은 클래스 상송성을 가진 클래스 집합사이의 유사도를 위한 수직적 측정방법이 있다. 이러한 방법론은 최고 또는 최적의 클래스 후보군을 선택하기 위해 제공학 전문가에게 광범위하고 통합적인 환경을 제시하고 있다.

  • PDF

고차원 데이터를 부분차원 클러스터링하는 효과적인 알고리즘 (An Effective Algorithm for Subdimensional Clustering of High Dimensional Data)

  • 박종수;김도형
    • 정보처리학회논문지D
    • /
    • 제10D권3호
    • /
    • pp.417-426
    • /
    • 2003
  • 고차원 데이터에서 클러스터를 찾아내는 문제는 그 중요성으로 인해 데이터 마이닝 분야에서 잘 알려져 있다. 클러스터 분석은 패턴 인식, 데이터 분석, 시장 분석 등의 여러 응용 분야에 광범위하게 사용되어지고 있다. 최근에 이 문제를 풀 수 있는 투영된 클러스터링이라는 새로운 방법론이 제기되었다. 이것은 먼저 각 후보 클러스터의 부분차원들을 선택하고 이를 근거로 한 거리 함수에 따라 가장 가까운 클러스터에 점이 배정된다. 우리는 고차원 데이터를 부분차원 클러스터링하는 새로운 알고리즘을 제안한다. 알고리즘의 주요한 세 부분은, $\circled1$적절한 개수의 점들을 갖는 여러 개의 후보 클러스터로 입력 점들을 분할하고, $\circled2$다음 단계에서 유용하지 않은 클러스터들을 제외하고, 그리고 $\circled3$선택된 클러스터들은 밀접도 함수를 사용하여 미리 정해진 개수의 클러스터들로 병합한다. 다른 클러스터링 알고리즘과 비교하여 제안된 알고리즘의 좋은 성능을 보여주기 위하여 많은 실험을 수행하였다.