• Title/Summary/Keyword: 후방산란기법

Search Result 33, Processing Time 0.026 seconds

The Effect of Electrochemical Treatment in Lowering Alkali Leaching from Cement Paste to an Aquatic Environment: Part 2- Microscopic Observation (전기화학적 기법을 통한 시멘트페이스트의 수중노출에 따른 알칼리이온 침출저감 효과: Part 2- 미세구조 분석)

  • Bum-Hee Youn;Ki-Yong Ann
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • In this study, microscopic observation was made on the surface of cement paste immersed in an aquatic environment for 100 days at electrochemical treatment to mitigate the leaching of alkali ions. To quantitatively rank the hydration products, unhydrated grains and porosity in the interfacial region, the backscattered electron(BSE) images were obtained by scanninng electron microscopy. As a result, it was found that the porosity on the surface was significantly reduced by the electrochemical treatment, while unhydrated grains were more or less increased presumably limited hydration reaction under electric charge. At electrochemical treatment, Ca2+ ions present in C-S-H gel could be precipitated with OH- to form Ca(OH)2 then to lower C-S-H gel and simultaneously to enhance Ca(OH)2. Substantially, the risk of alkali leaching could be lowered by the limited ionized matrix under electrochemical treatment.

Improved Method of Moments Using Hybrid Technique of Galerkin's and Interpolation Methods for Numerical Analysis of Electromagnetic Waves (전자파 수치 해석을 위해 갤러킨 기법과 보간법을 혼용하여 개선시킨 모멘트법)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.4
    • /
    • pp.541-550
    • /
    • 2012
  • An improved method of moments using a hybrid Galerkin-interpolation technique for numerical analysis of electromagnetic wave scattering in the 3-dimensional space is presented in this paper. Basically, the EFIE(electric field integral equation) and RWG(Rao-Wilton-Glisson) basis function are used to compute a property of electromagnetic wave scattering. We propose a hybrid technique combining the existing Galerkin's method with the interpolation method to improve the efficiency of the numerical computation. Then, an index of relative distance of each cells was defined to distinguish the relatively far elements, which interpolation method can be applied. To verify the performance of the proposed technique, the analytical Mie-series solution was used to compute the theoretical RCS of a conducting sphere for the purpose of comparison. We also applied this hybrid technique to various scatterers such as trihedral/omni-directional corner-reflectors to analyze the radar backscattering properties.

The effect of suspended sediment on bottom reverberation (부유성 퇴적물이 해저면 잔향음 신호에 미치는 영향)

  • Yoon Kwan-Seob;Choi Jee Woong;Na Jungyul;Park Jung-Soo
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • autumn
    • /
    • pp.335-338
    • /
    • 2001
  • 잔향음은 시변동성이 존재하는 유동성 경계면 잔향음(해수면, 체적)과 시변동성이 존재하지 않는 고정 경계면 잔향음(해저면)으로 분류된다. 그러나 고정 경계면 잔향음으로 알려진 해저면 잔향음에서도 단주기적 시변동성이 존재하고 있음이 여러 실측자료에서 관측되고 있다. 본 연구는 시변동성의 원인을 파악하고자 실험실에서 부유성 퇴적물의 농토에 따른 후방산란 신호를 측정하였다. 또한 동해에서 측정된 시간에 따른 잔향음신호(80kHz)와 ADCP(4.2MHz) 자료를 비교하여 천해에서의 체적 산란체의 변동이 잔향음 신호에 영향을 미칠 수 있음을 확인하였다. 아울러 본 논문에서는 잔향음 신호의 단주기적 시변동성에 의한 잡음 성분을 제거하여 표준화된 잔향음 신호를 획득하기 위한 방법으로 Low Rank Approximation(LRA)을 제안하였다. 이 기법은 특이해 분해(Singular Value Decomposition, SVD)를 수행하여 실측 자료 행렬로부터 고유치(Eigenvalue)과 고유벡터(Eigenvector)를 추출한 후, 추출된 고유치를 제한적으로 사용하여 근사화 하는 기법으로 시변동성 신호를 제거하는데 효율적인 방법이다.

  • PDF

State of The Art of Offshore Survey Technology for Monitoring Underwater Gas Export Pipeline Installation at DongHae-1 Gas Field (동해-1 가스전 해저배관 설치공사에 적용된 최신 해양 측량기술)

  • Park, Joseph
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.722-740
    • /
    • 2005
  • 본 논문은 최근의 석유탐사 및 개발사업 현장에서 사용되고 있는 최신의 측량기술 및 해양공사의 측량 기술 표준화 동향을 소개하고, 이에 기반하여 동해1 가스전 해저배관 공사에 적용한 사례를 기술하였다. 해저배관 시설공사를 수행하기 위한 사전측량 및 시공지원 측량은 다양한 탐사장비가 동원되며, 각 장비들의 운영, 자료처리, 해석, 도면화를 위하여 실시간지원이 가능한 시스템을 운영하는 기술이 요구된다. 이를 위하여 해저배관 시공단계별(Pre-Installation Survey, Touch-down Monitoring, As-laid As-Built Survey, Post-installation Survey) 요구되는 측량성과 및 이를 획득하기 위한 소해측량 시스템의 성능평가 및 정확도 분석을 수행하였다. 또한, 해저지형 탐사를 위해 동원된 소해측량시스템(Swath Sonar System)에서 취득되는 수심(Bathymetry) 및 후방산란 음압(Backscattered Amplitude) 자료를 맵핑하여 해저배관의 설치 경로를 측량하는 기법에 대하여 소개하고, 추후 해저배관 보호 및 관리시의 효율적인 모니터링 기법을 제시한다.

  • PDF

Analysis of Acoustic Propagation using Spectral Parabolic Equation Method (스펙트럴 포물선 방정식 법을 이용한 수중음파 전달해석)

  • Kim, Kook-Hyun;Seong, Woo-Jae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.72-78
    • /
    • 1996
  • This thesis deals with a method to solve a two-and-one-half-dimensional ($2\frac12$ D) problem, which means that the ocean environment is two-dimensional whereas the source is fully three-dimensionally propagating, including three-dimensional refraction phenomena and three-dimensional back-scattering, using two-dimensional two-way parabolic equation method combined with Fourier synthesis. Two dimensional two-way parabolic equation method uses Galerkin's method for depth and Crank-Nicolson method and alternating direction for range and provides a solution available to range-dependent problem with wave-field back-scattered from discontinuous interface. Since wavenumber, k, is the function of depth and vertical or horizontal range, we can reduce a dimension of three-dimensional Helmholtz equation by Fourier transforming in the range direction. Thus transformed two-dimensional Helmholtz equation is solved through two-way parabolic equation method. Finally, we can have the $2\frac12$ D solution by inverse Fourier transformation of the spectral solution gained from in the last step. Numerical simulation has been carried out for a canonical ocean environment with stair-step bottom in order to test its accuracy using the present analysis. With this spectral parabolic equation method, we have examined three-dimensional acoustic propagation properties in a specified site in the Korean Straits.

  • PDF

A Stable MOT Scheme with Combined Field Integral Equation for the Analysis of Transient Scattering from Conducting Structure (도체 구조물의 과도 산란 해석을 위한 결합 적분방정식의 안정된 MOT 기법)

  • Lee, Chang-Hwa;An, Ok-Kyu;Kwon, Woo-Hyen;Jung, Baek-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.4
    • /
    • pp.427-435
    • /
    • 2008
  • In this paper, a stable marching-on in time(MOT) method with a time domain combined field integral equation(CFIE) is presented to obtain the transient scattering response from arbitrarily shaped three-dimensional conducting bodies. This formulation is based on a linear combination of the time domain electric field integral equation(EFIE) with the magnetic field integral equation(MFIE). The time derivatives in the EFIE and MFIE are approximated using a central finite difference scheme and other terms are averaged over time. This time domain CFIE approach produces results that are accurate and stable when solving for transient scattering responses from conducting objects. Numerical results with the proposed MOT scheme are presented and compared with those obtained from the conventional method and the inverse discrete Fourier transform(IDFT) of the frequency domain CFIE solution.

Compact Orthomode Transducer for Field Experiments of Radar Backscatter at L-band (L-밴드 대역 레이더 후방 산란 측정용 소형 직교 모드 변환기)

  • Hwang, Ji-Hwan;Kwon, Soon-Gu;Joo, Jeong-Myeong;Oh, Yi-Sok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.7
    • /
    • pp.711-719
    • /
    • 2011
  • A study of miniaturization of an L-band orthomode transducer(OMT) for field experiments of radar backscatter is presented in this paper. The proposed OMT is not required the additional waveguide taper structures to connect with a standard adaptor by the newly designed junction structure which bases on a waveguide taper. Total length of the OMT for L-band is about 1.2 ${\lambda}_o$(310 mm) and it's a size of 60 % of the existing OMTs. And, to increase the matching and isolation performances of each polarization, two conducting posts are inserted. The bandwidth of 420 MHz and the isolation level of about 40 dB are measured in the operating frequency. The L-band scatterometer consisting of the manufactured OMT, a horn-antenna and network analyzer(Agilent 8753E) was used STCT and 2DTST to analysis the measurement accuracy of radar backscatter. The full-polarimetric RCSs of test-target, 55 cm trihedral corner reflector, measured by the calibrated scatterometer have errors of -0.2 dB and 0.25 dB for vv-/hh-polarization, respectively. The effective isolation level is about 35.8 dB in the operating frequency. Then, the horn-antenna used to measure has the length of 300 mm, the aperture size of $450{\times}450\;mm^2$, and HPBWs of $29.5^{\circ}$ and $36.5^{\circ}$ on the principle E-/H-planes.

Analysis of Cylinder Swirl Flow and Lean Combustion Characteristics of 3rd Generation LPLI(Liquid Phase LPG Injection) Engine (제3세대 LPLI 엔진 연소실내 스월유동 및 희박연소 특성 해석)

  • Kang, Kern-Yong;Lee, Jin-Wook
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.31 no.1
    • /
    • pp.26-33
    • /
    • 2007
  • The intake swirl motion, as one of dominant effects for an engine combustion. is very effective for turbulence enhancement during the compression process in the cylinder of 2-valve engine. Because the combustion flame speed is determined by the turbulence that is mainly generated from the mean flow of the charge air motion in intake port system. This paper describes the experimental results of swirl flow and combustion characteristics by using the oil spot method and back-scattering Laser Doppler velocimeter (LDV) in 2-valve single cylinder transparent LPG engine using the liquid phase LPG injection. For this. various intake port configurations were developed by using the flow box system and swirl ratios for different intake port configurations were determined by impulse swirl meter in a steady flow rig test. And the effects of intake swirl ratio on combustion characteristics in an LPG engine were analyzed with some analysis parameters that is swirl ratio. mean flow coefficient, swirl mean velocity fuel conversion efficiency. combustion duration and cyclic variations of indicated mean effective pressure(IMEP). As these research results, we found that the intake port configuration with swirl ratio of 2.0 that has a reasonable lean combustion stability is very suitable to an $11{\ell}$ heavy-duty LPG engine with liquid phase fuel injection system. It also has a better mean flow coefficient of 0.34 to develope a stable flame kernel and to produce high performance. This research expects to clarify major factor that effects on the design of intake port efficiently with the optimized swirl ratio for the heavy duty LPG engine.

Interactive 3D Visualization of Ceilometer Data (운고계 관측자료의 대화형 3차원 시각화)

  • Lee, Junhyeok;Ha, Wan Soo;Kim, Yong-Hyuk;Lee, Kang Hoon
    • Journal of the Korea Computer Graphics Society
    • /
    • v.24 no.2
    • /
    • pp.21-28
    • /
    • 2018
  • We present interactive methods for visualizing the cloud height data and the backscatter data collected from ceilometers in the three-dimensional virtual space. Because ceilometer data is high-dimensional, large-size data associated with both spatial and temporal information, it is highly improbable to exhibit the whole aspects of ceilometer data simply with static, two-dimensional images. Based on the three-dimensional rendering technology, our visualization methods allow the user to observe both the global variations and the local features of the three-dimensional representations of ceilometer data from various angles by interactively manipulating the timing and the view as desired. The cloud height data, coupled with the terrain data, is visualized as a realistic cloud animation in which many clouds are formed and dissipated over the terrain. The backscatter data is visualized as a three-dimensional terrain which effectively represents how the amount of backscatter changes according to the time and the altitude. Our system facilitates the multivariate analysis of ceilometer data by enabling the user to select the date to be examined, the level-of-detail of the terrain, and the additional data such as the planetary boundary layer height. We demonstrate the usefulness of our methods through various experiments with real ceilometer data collected from 93 sites scattered over the country.

Use of Numerical Simulation for Water Area Observation by Microwave Radar (마이크로웨이브 레이더를 이용한 수역관측에 있어서의 수치 시뮬레이션 이용)

  • Yoshida, Takero;Rheem, Chang-Kyu
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.3
    • /
    • pp.208-218
    • /
    • 2012
  • Numerical simulation technique has been developed to calculate microwave backscattering from water surface. The simulation plays a role of a substitute for experiments. Validation of the simulation was shown by comparing with experimental results. Water area observations by microwave radar have been simulated to evaluate algorithms and systems. Furthermore, the simulation can be used to understand microwave scattering mechanism on the water surface. The simulation has applied to the various methods for water area observations, and the utilizations of the simulation are introduced in this paper. In the case of fixed radar, we show following examples, 1. Radar image with a pulse Doppler radar, 2. Effect of microwave irradiation width and 3. River observation (Water level observation). In addition, another application (4.Synthetic aperture radar image) is also described. The details of the applications are as follows. 1. Radar image with a pulse Doppler radar: A new system for the sea surface observation is suggested by the simulation. A pulse Doppler radar is assumed to obtain radar images that display amplitude and frequency modulation of backscattered microwaves. The simulation results show that the radar images of the frequency modulation is useful to measure sea surface waves. 2. Effect of microwave irradiation width: It is reported (Rheem[2008]) that microwave irradiation width on the sea surface affects Doppler spectra measured by a CW (Continuous wave) Doppler radar. Therefore the relation between the microwave irradiation width and the Doppler spectra is evaluated numerically. We have shown the suitable condition for wave height estimation by a Doppler radar. 3. River observation (Water level observation): We have also evaluated algorithms to estimate water current and water level of river. The same algorithms to estimate sea surface current and sea surface level are applied to the river observation. The simulation is conducted to confirm the accuracy of the river observation by using a pulse Doppler radar. 4. Synthetic aperture radar (SAR) image: SAR images are helpful to observe the global sea surface. However, imaging mechanisms are complicated and validation of analytical algorithms by SAR images is quite difficult. In order to deal with the problems, SAR images in oceanic scenes are simulated.