Learning and analyzing 3D point clouds with deep networks is challenging due to the limited and irregularity of the data. In this paper, we present a data-driven point cloud augmentation technique. The key idea is to learn multilevel features per point and to reconstruct to a similar point set. Our network is applied to a projection loss function that encourages the predicted points to remain on the geometric shapes with a particular target. We conduct various experiments using ShapeNet part data to evaluate our method and demonstrate its possibility. Results show that our generated points have a similar shape and are located closer to the object.
Because of the difference in network structure and loss function, Verification and identification models have their respective advantages and limitations for person reidentification (re-ID). In this work, we propose a multi-task network simultaneously computes the identification loss and verification loss for person reidentification. Given a pair of images as network input, the multi-task network simultaneously outputs the identities of the two images and whether the images belong to the same identity. In experiments, we analyze the major factors affect the accuracy of person reidentification. To address the occlusion problem and improve the generalization ability of reID models, we use the Random Erasing Augmentation (REA) method to preprocess the images. The method can be easily applied to different pre-trained networks, such as ResNet and VGG. The experimental results on the Market1501 datasets show significant and consistent improvements over the state-of-the-art methods.
Changes in a person's health affect one's lifestyle and work activities. According to the World Health Organization (WHO), abnormal activity is growing faster in people aged 60 or more than any other age group in almost every country. This trend steadily continues and expected to increase further in the near future. Abnormal activity put these people at high risk of expected incidents since most of these people live alone. Human abnormal activity analysis is a challenging, useful and interesting problem among the researchers and its particularly crucial task in life and health care areas. In this paper, we discuss the problem of abnormal activities of old people lives alone at home. We propose Convolutional Neural Network (CNN) based model to detect the abnormal behaviors of elderlies by utilizing six simulated action data from daily life actions.
In spite of a rapid development in the quality of built-in mobile cameras, their some physical restrictions hinder them to achieve the satisfactory results of digital single lens reflex (DSLR) cameras. In this work we propose an end-to-end deep learning method to translate ordinary images by mobile cameras into DSLR-quality photos. The method is based on the framework of generative adversarial networks (GANs) with several improvements. First, we combined the U-Net with DenseNet and connected dense block (DB) in terms of U-Net. The Dense U-Net acts as the generator in our GAN model. Then, we improved the perceptual loss by using the VGG features and pixel-wise content, which could provide stronger supervision for contrast enhancement and texture recovery.
자율주행 자동차에서의 보행자 인식 및 사람의 행동 인식과 같은 분야 등에 대한 연구들이 활발하게 진행되고 그에 기반을 둔 기술들이 많이 개발되고 있다. 그리고 대부분의 연구에서는 사람에 대한 경계 박스를 검출한다. 영상에서 사람의 유무 혹은 위치를 판단하는 문제에서는 경계 박스만을 검출하는 것이 효율적일 수 있으나 경계 박스는 행동 인식과 같은 분야에 사용하기에는 많은 정보의 손실이 발생할 수 있다. 본 논문에서는 U-NET 구조의 딥러닝 모델을 사용해 경계 박스로 인한 정보 손실을 줄일 수 있는 보행자 분할 방법을 제안한다. 모델의 학습을 위해 2017 COCO 데이터셋의 사람 카테고리를 사용하였으며 Penn-Fudan 보행자 데이터셋을 이용하여 제안 방법을 테스트하였으며 기존의 방법들과 비교하여 의미 있는 결과를 얻었다.
최근 GPGPU를 활용한 병렬처리가 각광을 받고 있는 가운데 GPU의 구조적 특성인 매니코어(many core)기반에서 쓰레드(thread)의 구성이 성능에 얼마나 영향을 미치는지에 관해 수치적 해답을 얻고자 하였다. 이는 멀티코어 (multi core)기반으로 작성된 프로그램을 GPGPU로 변환하는 과정에서 쓰레드의 최대활용도를 빠르게 추측 할 수 있도록 도움을 얻고자 하는데 일차적인 목적이 있다. 현재 GPGPU의 쓰레드 구성은 입력되는 데이터의 양을 고려하여 충분한 테스트를 거쳐 경험적인 최적화 수를 지정해 주워야 한다. 이번 연구를 통해 GPGPU로 변환하는 과정에서 최적의 쓰레드 수구성 방법을 추측 할 수 있으며 더 나아가 동적으로 최적의 수를 구할 수 있도록 하는데 목적이 있다.
This paper presents a new feature extraction technique, correlation coefficient and Manhattan distance (MD) based method for recognition of rotated object in an image. This paper also represented a new concept of intensity invariant. We extracted global features of an image and converts a large size image into a one-dimensional vector called circular feature vector's (CFVs). An especial advantage of the proposed technique is that the extracted features are same even if original image is rotated with rotation angles 1 to 360 or rotated. The proposed technique is based on fuzzy sets and finally we have recognized the object by using histogram matching, correlation coefficient and manhattan distance of the objects. The proposed approach is very easy in implementation and it has implemented in Matlab7 on Windows XP. The experimental results have demonstrated that the proposed approach performs successfully on a variety of small as well as large scale rotated images.
The most powerful and modern face recognition techniques are using deep learning methods that have provided impressive performance. The outbreak of COVID-19 pneumonia has spread worldwide, and people have begun to wear a face mask to prevent the spread of the virus, which has led existing face recognition methods to fail to identify people. Mainly, it pushes masked face recognition has become one of the most challenging problems in the face recognition domain. However, deep learning methods require numerous data samples, and it is challenging to find benchmarks of masked face datasets available to the public. In this work, we develop a new simulated masked face dataset that we can use for masked face recognition tasks. To evaluate the usability of the proposed dataset, we also retrained the dataset with ArcFace based system, which is one the most popular state-of-the-art face recognition methods.
Image transmission by means of telecommunications is an essential task for information sharing. For considerable distances, wireless channels can be utilized and tuned for proper uses of image data exchange. However, the disturbances that a radio wave encounter during transmission causes partial or total loss of information. Result of such communications is a distorted image at the receiver's end. This paper proposes an auto-encoder architecture as an image enhancement method for narrow-bandwidth radio images. With this method, a distorted image can be improved for better receiver satisfaction. The proposed auto-encoder is trained with many narrow-bandwidth radio image data; hence it enhances a given distorted image. Also, the results were verified with the original image data being the reference images.
Most state-of-the-art CNNs for action recognition are based on a two-stream architecture: RGB frames stream represents the appearance and the optical flow stream interprets the motion of action. However, the cost of optical flow computation is very high and then it increases action recognition latency. We introduce a design strategy for action recognition inspired by a two-stream network and teacher-student architecture. There are two sub-networks in our neural networks, the optical flow sub-network as a teacher and the RGB frames sub-network as a student. In the training stage, we distill the feature from the teacher as a baseline to train student sub-network. In the test stage, we only use the student so that the latency reduces without computing optical flow. Our experiments show that its advantages over two-stream architecture in both speed and performance.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.