• Title/Summary/Keyword: 효용 비용 인식

Search Result 32, Processing Time 0.016 seconds

Development of Tree Carbon Calculator to Support Landscape Design for the Carbon Reduction (탄소저감설계 지원을 위한 수목 탄소계산기 개발 및 적용)

  • Ha, Jee-Ah;Park, Jae-Min
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.51 no.1
    • /
    • pp.42-55
    • /
    • 2023
  • A methodology to predict the carbon performance of newly created urban greening plans is required as policies based on quantifying carbon performance are rapidly being introduced in the face of the climate crisis caused by global warming. This study developed a tree carbon calculator that can be used for carbon reduction designs in landscaping and attempted to verify its effectiveness in landscape design. For practical operability, MS Excel was selected as a format, and carbon absorption and storage by tree type and size were extracted from 93 representative species to reflect plant design characteristics. The database, including tree unit prices, was established to reflect cost limitations. A plantation experimental design to verify the performance of the tree carbon calculator was conducted by simulating the design of parks in the central region for four landscape design, and the causal relationship was analyzed by conducting semi-structured interviews before and after. As a result, carbon absorption and carbon storage in the design using the tree carbon calculator were about 17-82% and about 14-85% higher, respectively, compared to not using it. It was confirmed that the reason for the increase in carbon performance efficiency was that additional planting was actively carried out within a given budget, along with the replacement of excellent carbon performance species. Pre-interviews revealed that designers distrusted data and the burdens caused by new programs before using the arboreal carbon calculator but tended to change positively because of its usefulness and ease of use. In order to implement carbon reduction design in the landscaping field, it is necessary to develop it into a carbon calculator for trees and landscaping performance. This study is expected to present a useful direction for ntroducing carbon reduction designs based on quantitative data in landscape design.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.