• Title/Summary/Keyword: 횡 안정성 제어

Search Result 40, Processing Time 0.037 seconds

Adaptive Variable Weights Tuning in an Integrated Chassis Control for Lateral Stability Enhancement (횡방향 안정성 향상을 위한 통합 섀시 제어의 적응 가변 가중치 조절)

  • Yim, Seongjin;Kim, Wooil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.103-111
    • /
    • 2016
  • This paper presents an adaptive variable weights tuning system for an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) for lateral stability enhancement. After calculating the control yaw moment needed to stabilize a vehicle with a controller design method, it is distributed into the tire forces generated by ESC and AFS using weighted pseudo-inverse-based control allocation (WPCA). On a low friction road, lateral stability can deteriorate due to high vehicle speed. To cope with the problem, adaptive tuning rules on variable weights of the WPCA are proposed. To check the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, CarSim.

Development of Vehicle Integrated Dynamics Control System with Brake System Control (제동 장치를 이용한 차량통합운동제어시스템 개발)

  • Song, Jeonghoon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.7
    • /
    • pp.591-597
    • /
    • 2017
  • This study is to develop a vehicle Integrated Dynamics Control System(IDCB) that can stabilize the lateral dynamics and maintain steerability. To accomplish this task, an eight degree of freedom vehicle model and a nonlinear observer are designed. The IDCB independently controls the brake systems of four wheels with a fuzzy logic control and a sliding model control. The result shows that the nonlinear observer produced satisfactory results. IDCB tracked the reference yaw rate and reduced the body slip angle under all tested conditions. It indicates that the IDCB enhanced lateral stability and preserved steerability.

능동형 횡동요 감쇠장치의 효능에 관한 연구

  • 최찬문;안장영;서두옥
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2003.10a
    • /
    • pp.83-86
    • /
    • 2003
  • 선박은 근본적으로 파랑이 향상 존재하는 해상에서 운항하게 되므로 파랑 중에서의 선체운동 여객, 승무원, 화물 및 선박 자체의 안전과 밀접한 관계를 가지게 된다. 뿐만 아니라 선박의 운동은 해상에서의 각종 활동과 임무수행의 정도를 결정하는 주요한 인자가 되고 있다. 횡동요(Rolling)는 6 자유도 운동 가운데에서 가장 중요한 운동이며, 선박들이 근본적으로 횡동요에 대하여 낮은 감쇠특성을 갖고 있기 때문에 안정성 측면에서 볼 때에 가장 많이 제어되어 왔다. (중략)

  • PDF

Lateral Stability Control for Rear Wheel Drive Vehicles Using Electronic Limited Slip Differential (전자식 차동 제한장치를 이용한 후륜구동 차량의 횡방향 안정성 제어)

  • Cha, Hyunsoo;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.3
    • /
    • pp.6-12
    • /
    • 2021
  • This paper presents a lateral stability control for rear wheel drive (RWD) vehicles using electronic limited slip differentials (eLSD). The proposed eLSD controller is designed to increase the understeer characteristic by transferring torque from the outside to inside wheel. The proposed algorithm is devised to improve the lateral responses at the steady state and transient cornering. In the steady state response, the proposed algorithm can extend the region of linear cornering response and can increase the maximum limit of available lateral acceleration. In the transient response, the proposed controller can reduce the yaw rate overshoot by increasing the understeer characteristic. The proposed algorithm has been investigated via computer simulations. In the simulation results, the performance of the proposed controller is compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the vehicle lateral stability and handling performance.

Suppression of Coupled Pitch-Roll Motions using Quasi-Sliding Mode Control (준 슬라이딩 모드 제어를 이용한 선박의 종동요 및 횡동요 억제)

  • Lee, Sang-Do;Cuong, Truong Ngoc;Xu, Xiao;You, Sam-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.2
    • /
    • pp.211-218
    • /
    • 2021
  • This paper addressed the problems of controlling the coupled pitch-roll motions in a marine vessel exposed to the regular waves in the longitudinal and transversal directions. Stabilization of the pitch and roll motions can be regarded as the essential task to ensure the safety of a ship's navigation. One of the important features in the pitch-roll motions is the resonance phenomena, which result in unexpected large responses in terms of pitch and roll modes in some specific conditions. Besides, owing to its inherent characteristics of coupled combination and nonlinearity of restoring terms, the vessel shows various dynamical behaviors according to the system parameters, especially in the pitch responses. Above all, it can be seen that suppression of pitch rate remains the most significant challenge to overcome for ship maneuvering safety studies. To secure the stable upright condition, a quasi-sliding mode control scheme is employed to reduce the undesirable pitch and roll responses as well as chattering elimination. The Lyapunov theory is adopted to guarantee the closed stability of the pitch-roll system. Numerical simulations demonstrate the effectiveness of the control scheme. Finally, the control goals of state convergences and chattering reduction are effectively realized through the proposed control synthesis.

Lateral and Directional SCAS Controller Design Using Multidisciplinary Optimization Program (통합 최적화 프로그램을 이용한 횡운동 SCAS 제어기 설계)

  • Lee, Sang-Jong;Lee, Jang-Ho;Lee, Dae-Sung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.3
    • /
    • pp.251-257
    • /
    • 2012
  • The flight controller should meet the flying qualities, stability margins, and time response requirement according to the class of a target aircraft or UAV. Classical design process of PID controller is a very time consuming process and needed trial and erros. The best way is to apply the multi-disciplinary optimization algorithm to meet the numerous constraints of controller requirements. This paper presents how multi-objective parameter optimization (CONDUIT) can be used to determine many design parameters of lateral stability and augmentation system for roll and heading controller of the small UAV. To verify the effectiveness of applying the optimization method, designed controller using optimization are compared with the baseline controller that is designed only considering the time responses.

A Study on Improving Driving Stability System by Yaw Moment Control (요우모멘트를 통한 주행안정성 향상 제어 알고리즘에 관한 연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.2
    • /
    • pp.392-397
    • /
    • 2006
  • This paper proposed yaw moment control scheme using braking and active rear wheel steering for improving driving stability especially in high speed driving. Its characteristics the unified chassis control system of two equipment that 4WS(4 Wheel Steering) and ESP(Electronic Stability Program). in this study the performance of the vehicle was compared each equipment. And conventional ABS and TCS can only possible to control the longitudinal movement of braking equipment and drive which can only available to control of longitudinal direction. There after new braking system ESP was developed, which controls both of longitudinal and lateral, with adding of the function of controlling Active Yaw Moment. On this paper, we show about not only designing of improved braking and steering system through establishing of the integrated control system design of 4WS and ESP but also designing of the system contribute to precautious for advanced vehicle stability problem.

A Study on Braking and Driving Force Distribute Control for Active Traction Control System (능동 휠 토크 제어시스템 설계를 위한 제동력${\cdot}$구동력 배분제어에 관한연구)

  • Park Jung-hyen;Kim Soon-ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1402-1406
    • /
    • 2005
  • A study on the vehicle stability is discussed. In the field of the studies the electronic control systems help overcoming the limit of improvement in vehicle performance with the methods above. Driving stability is mainly incorporated with the later motion of a vehicle generated by the driver's steering input. Recently VDC system has been studieed in order to improve the active stability. This VDC system uses the active braking force. This paper propose the ATC that uses driving force. This paper compared VDC with ATC through an experiment.

Interval Type-2 Fuzzy Logic Control System of Flight Longitudinal Motion (항공기 종 제어를 위한 Interval Type-2 퍼지논리 제어시스템)

  • Cho, Young-Hwan;Lee, Hong-Gi;Jeon, Hong-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.168-173
    • /
    • 2015
  • The flight control of aircraft, which has nonlinear time-varying dynamic characteristics depending on the various and unexpected external conditions, can be performed on two motions: longitudinal motion and lateral motion. In the longitudinal motion control of aircraft, pitch and trust are major control parameters and roll and yaw are control ones in the lateral motion control. Until now, a number of efficient and reliable control schemes that can guarantee the stability and maneuverability of the aircraft have been developed. Recently, the intelligent flight control scheme, which differs from the conventional control strategy requiring the various and complicate procedures such as the wind tunnel and environmental experiments, has attracted attention. In this paper, an intelligent longitudinal control scheme has been proposed utilizing Interval Type-2 fuzzy logic which can be recognized as a representative intelligent control methodology. The results will be verified through computer simulation with a F-4 jet fighter.