• Title/Summary/Keyword: 횡철근비

Search Result 232, Processing Time 0.028 seconds

Effects of Bar Deformation Height on Bond Degradation Subject to Cyclic loading (반복하중시 철근 마디높이에 따른 부착 손상특성)

  • Lee, Jae-Yuel;Kim, Byong-Kook;Hong, Gi-Suop;Choi, Oan-Chul
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.1
    • /
    • pp.17-24
    • /
    • 2003
  • One of the reasons for brittle failure in reinforced concrete structures subjected to severe earthquake is due to large local bond-slippage of bars resulting in fast bond degradation between reinforcing bars and concrete. This study aims to evaluate effects of bar deformation height on bond performance, specially, bond degradation under cyclic loading. Bond test specimens were constructed with machined bars with high relative rib areas. The degree of confinement by transverse bars is also another key parameters in this bond test. From test results, amounts of energy dissipation are calculated and compared for each parameter. Test results show that bond strength and stiffness drops significantly as cycles increases. The confinement and high relative rib area are effective to delay bond degradation, as the reduction of bond strength of cyclic loading compared to monotonic loading decreased for bars with large confinement and high relative rib areas. The energy dissipation also increases as the degree of confinement and relative rib area increases. However, tested bars with very high rib areas show that the bond may be damaged at relatively small slip because of high stiffness. The study will help to understand the bond degradation mechanism due to bar deformation height under cyclic loading and be useful to develop new deformed bars with high relative rib areas.

Seismic Performance Assessment of Hollow Circular Reinforced Concrete Bridge Columns with Confinement Steel (중공원형 철근콘크리트 교각의 횡방향철근에 따른 내진성능평가)

  • Kim, Tae-Hoon;Kang, Hyeong-Taek
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.1
    • /
    • pp.13-25
    • /
    • 2012
  • The purpose of this study was to investigate the seismic behavior of hollow circular reinforced concrete bridge columns with confinement steel, and to develop improved seismic design criteria. Three hollow circular columns were tested under a constant axial load and a quasi-static, cyclically reversed horizontal load. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. The numerical method used gives a realistic prediction of the seismic performance throughout the loading cycles for the several test specimens investigated. Based on the experimental and analytical results, design recommendations are presented to improve current practice in the design and construction of hollow circular reinforced concrete bridge columns.

Performance Evaluation of Inelastic Rotation Capacity of Reinforced Concrete Beam-Column Connections (철근콘크리트 보-기둥 접합부의 비탄성 회전 능력에 대한 성능 평가)

  • Lee, Ki-Hak;Woo, Sung-Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.1-9
    • /
    • 2007
  • This study summarizes the results of a research project aimed at investigating the inelastic rotation capacity of beam-column connections of reinforced concrete moment frames. A total of 91 test specimens for beam-column joint connections were examined in detail, and 28 specimens were classified as special moment frame connections based on the design and detailing requirements in the ACI 318-02 Provisions. Then the acceptance criteria, originally defined for steel moment frame connections in the AISC-02 Seismic Provisions, were used to evaluate the joint connections of concrete moment frames. Twenty-seven out of 28 test specimens that satisfy the design requirements for special moment frame structures provide sufficient strength and are ductile up to a plastic rotation of 0.03 rad. without any major degradation in strength. Joint shear stress, column-to-beam flexural strength ratio, and transverse reinforcement ratio in a joint all play a key role in good performance of the connections.

Experimental Behavior of Reinforced Concrete Column-Bent Piers under Bidirectional Repeated Loading (이축반복하중을 받는 2주형 철근콘크리트 교각의 실험거동)

  • Park, Chang-Kyu;Lee, Beom-Gi;Song, Hee-Won;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.1 s.41
    • /
    • pp.17-24
    • /
    • 2005
  • Response of reinforced concrete (RC) column-bent piers subjected to bidirectional seismic loadings was experimentally investigated. RC column-bent piers represent one of the most popular shapes of piers used in Korea highway bridges. Four column-bent piers were constructed in 400 mm diameter and 2,000 mm height. Each pier has two circular supporting columns. These piers were tested under bidirectional lateral load reversals with an axial load of $0.1f_{ck}A_g$. The test parameters included : different transverse reinforcement contents and lap-spliced longitudinal reinforcing steels. Test results indicate that the lap splice of longitudinal reinforcing steels have significantly influenced on hysteretic response of column-bent piers similar to previous test results for single columns with corresponding test parameters. Column capacity was changed with the level of transverse confinement. From the comparison of test result for single column under unidirectional loading, the damage of single column was concentrated on lower plastic hinge region but the damage of column-bent piers was scattered to upper and lower plastic hinge region.

Ductility Evaluation of Heavyweight Concrete Shear Walls with Wire Ropes as a Lateral Reinforcement (와이어로프로 횡보강된 고중량콘크리트 전단벽의 연성평가)

  • Mun, Ju-Hyun;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.27 no.3
    • /
    • pp.207-214
    • /
    • 2015
  • This study examined the feasibility of wire ropes as lateral reinforcement at the boundary element of heavyweight concrete shear walls. The spacing of the wire ropes varied from 60 mm to 120 mm at an interval of 30 mm, which produces the volumetric index of the lateral reinforcement of 0.126~0.234. The wire ropes were applied as a external hoop and/or internal cross-tie. Five shear wall specimens were tested to failure under constant axial load and cyclic lateral loads. Test results showed that with the increase of the volumetric index of the lateral reinforcement, the ductility of shear walls tended to increase, whereas the variation of flexural capacity of walls was minimal. The flexural capacity of shear walls tested was slightly higher than predictions determined from ACI 318-11 procedure. The displacement ductility ratio of shear walls with wire ropes was higher than that of shear wall with the conventional mild bar at the same the volumetric index of the lateral reinforcement. In particular, the shear walls with wire rope index of 0.233 achieved the curvature ductility ratio of more than 16 required for high-ductility design.

Uniaxial Compression Behavior of Circular RC Columns Confined by Carbon Fiber Sheet Wraps (탄소섬유시트로 구속된 원형 RC기둥의 일축압축 거동)

  • Han, Sang Hoon;Hong, Ki Nam
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.2
    • /
    • pp.125-133
    • /
    • 2007
  • External confinement by CFS (Carbon Fiber Sheet) is a very effective retrofit method for the reinforced concrete columns subject to either static or seismic loads. For the reliable and cost-effective design of CFS, an accurate stress-strain curve is required for CFS-confined concrete. In this paper, uniaxial compression test on short RC column with circular section was performed. To evaluate the effect of confinement on the stress-strain relationship of CFS-confined concrete, CFS area ratio, spiral area ratio, and concrete compressive strength are considered as the test variables. Experiment results indicate that CFS jacketing significantly enhances strength and ductility of concrete. In addition, the CFS-jacketed specimens with the spiral steel show the lower load increasement ratio than those without the spiral steel.

Nonlinear Finite Element Analysis of Circular Hollow Reinforced Concrete Columns Based on Design Variables (설계변수에 따른 중공원형 철근콘크리트 교각의 비선형 유한요소해석)

  • Cheon, Ju-Hyun;Lee, Seung-Jin;Lee, Byung-Ju;Lee, Jae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.35-42
    • /
    • 2011
  • The seismic design of solid reinforced concrete bridge columns has been committed to, based on accumulated research and design specifications. The rational confinement model and seismic performance evaluation, however, are insufficient because of the lack of domestic and foreign design specifications about the experimental and analytical difficulties in the case of circular hollow reinforced concrete columns. In this paper, the seismic behavior of circular hollow reinforced concrete columns and its dependence on design variables are understood and explained. These research results can be used to derive the rational and economical design specifications for circular hollow sectional columns based on the result from the nonlinear analysis program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology).

Evaluation of Damage Indices for RC Bridge Piers with Premature Termination of Main Reinforcement Using Inelastic FE Analysis (비탄성 유한요소해석을 이용한 주철근 단락을 갖는 철근콘크리트 교각의 손상지수 평가)

  • 김태훈;신현목
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.4
    • /
    • pp.39-49
    • /
    • 2001
  • In this paper, inelastic analysis procedures are presented for the seismic performance evaluation of RC bridge piers with premature termination of main reinforcement. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bars and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack. The smeared crack approach is incorporated. In boundary plane at which each member with different thickness is connected, local discontinuous deformation due to the abrupt change in their stiffness can be taken into account by introducing interface element. The increase of concrete strength due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The proposed numerical method for seismic performance evaluation of RC bridge piers with premature termination of main reinforcement will be verified by comparison with reliable experimental results.

  • PDF

Material and Geometrical Noninear Analysis of Reinforced Concrete Columns under Cyclic Loading (반복하중을 받는 철근콘크리트 기둥부재의 재료 및 기하적인 비선형 해석)

  • 김운학
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.1
    • /
    • pp.55-66
    • /
    • 1999
  • This paper presents an analytical prediction of the hysteresis behavior of reinforced concrete long column with rectangular section under the cyclic loading state. The mechanical characteristic of cracked concrete and reinforcing bar in concrete has been modeled, considering the bond effect between reinforcing bar and concrete, the effect of aggregate interlocking at crack surface and the stiffness degradation after the crack has taken place. The strength increase of concrete due to the lateral confining reinforcement has been also taken into account to model the confined concrete. The formulation of these models for concrete and reinforcing bar has been based on the smeared crack concept that the stress-strain relationship of reinforced concrete element would be defined using the average values. In addition to the material nonlinear properties, the algorithm for large displacement problem that may give an additional deformation has been formulated using total Lagrangian formulation. The analytically predicted behavior was compared with test result and they showed good agreement in overall behavior.

  • PDF

Seismic Performance Evaluation of SRC Column by Quasi-Static Test (준정적 실험에 의한 SRC 합성교각의 내진성능 평가)

  • Han, Jung-Hoon;Park, Chang-Kyu;Shim, Chang-Su;Chung, Young-Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.4 s.50
    • /
    • pp.85-94
    • /
    • 2006
  • In the design of bridge piers in seismic area, the ductility requirement is the most important factor. In order to enhance the seismic performance of RC columns, it is necessary to make the ductility of columns larger by covering RC columns with steel tubes or confining RC columns by arranging transverse reinforcements such as hoop ties closely. Using core steel composite columns is useful as one of the reinforcing RC columns. In this paper, quasi-static tests on concrete encased composite columns with single core steel or multiple steel elements were performed to investigate the seismic performance of the composite columns. Eight concrete-encased composite specimens were fabricated. The cross-sections of these specimens are composed of concrete-encased H-shaped structural steel columns and a concrete-encased circular tube with partial in-filled concrete. Test parameters were the amount of the transverse reinforcements, type and number of encased steel member. Through the tests, it was evaluated the ductility of SRC composite specimens. It has become clear from the test results that encased steel elements makes the deformation capacity of the columns to be larger. The displacement ductility and lateral strength of specimen with concrete-encased circular tube were indicated the biggest value.