• Title/Summary/Keyword: 횡분배을

Search Result 6, Processing Time 0.023 seconds

Effect of Cross Beams on Live Load Distribution in Rolled H-beam Bridges (압연형강(H형강) 거더교의 가로보가 활하중 횡분배에 미치는 영향)

  • Yoon, Dong Yong;Eun, Sung Woon
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.5
    • /
    • pp.535-542
    • /
    • 2006
  • In this study, the effects of cross beams on the lateral distribution of live loads in composite rolled H-beam girder bridges, were investigated through three-dimensional finite element analysis. The parameters considered in this study were the inertial moment ratio between the main girder and the cross beam, the presence of the cross beam, and the number of cross beams. The live load lateral distribution factors were investigated through finite element analysis and the customary grid method. The results show that there was no difference between the bridge models with and without a cross beam. The cross beam of the beam and frame types also showed almost the same live load lateral distribution factors. However, the finite element analysis showed that the concrete slab deck plays a major role in the lateral distribution of a live load, and consequently, the effect of the cross beam is not so insignificant that it can be neglected.

Direct Solution of Structural Rigid Frames with Sidesway (절점이동(節點移動)이 있는 구조강절(構造剛節) 뼈대의 직접해법(直接解法))

  • Yang, Chang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.3
    • /
    • pp.91-105
    • /
    • 1992
  • For the analysis of multistory frames with sidesway, no adequate procedures can be found in the classical methods of structural analysis. Even well-known procedures such as the slope-deflection method and the moment distribution method may not be effective tools since those methods require a multiple of computational labor and/or yield results of approximate values. In this study, a direct method is developed and proposed for the analysis of multistory frames with sidesway, which is due to the lateral loads, asymmetry of the structure itself, or asymmetry of vertical loadings. The proposed method is to obtain simple forms of equations derived by a mathematical formulation of the moment distribution procedure combined with successive correction concept. Numerical illustrations show that the results obtained by the proposed method agree well with those by rigorous ones. Undoubtedly, this newly developed method can be applied more easily for the analysis of structural frames without joint translation as well as continuous beams.

  • PDF

Adaptive Variable Weights Tuning in an Integrated Chassis Control for Lateral Stability Enhancement (횡방향 안정성 향상을 위한 통합 섀시 제어의 적응 가변 가중치 조절)

  • Yim, Seongjin;Kim, Wooil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.103-111
    • /
    • 2016
  • This paper presents an adaptive variable weights tuning system for an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) for lateral stability enhancement. After calculating the control yaw moment needed to stabilize a vehicle with a controller design method, it is distributed into the tire forces generated by ESC and AFS using weighted pseudo-inverse-based control allocation (WPCA). On a low friction road, lateral stability can deteriorate due to high vehicle speed. To cope with the problem, adaptive tuning rules on variable weights of the WPCA are proposed. To check the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, CarSim.

Lateral Load Distribution Estimation of a PSC Girder Bridge from Dynamic Loading Test (동적재하시험을 통한 PSC 거더교의 횡분배 측정)

  • Kim, Sung-Wan;Cheung, Jin-Hwan;Kim, Seong-Do;Park, Jae-Bong;Lee, Myoung-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.60-68
    • /
    • 2017
  • Since the bridge is the main facility of the road that is the core of the civil infrastructure, the bridge is constructed to ensure stability and serviceability during the traffic use. In order to secure the safety of bridges, evaluating the integrity of bridges at present is an important task in the maintenance work of bridges. In general, to evaluate the load carrying capacity of bridges, it is possible to confirm the superimposed behavior and symmetric behavior of bridges by estimating the lateral load distribution factor of the bridges through vehicle loading tests. However, in order to measure the lateral load distribution factor of a commonly used bridge, a static loading test is performed. There is a difficulty in traffic control. Therefore, in this study, the static displacement component of the bridge measured in the dynamic loading test and the ambient vibration test was extracted by using empirical mode decomposition technique. The lateral load distribution was estimated using the extracted static displacement component and compared with the lateral load distribution factor measured in the static loading test.

The Characteristics of Structural Behavior of Temporary Bridge Using Continuous Cross Beam (일체형 가로보를 이용한 임시교량의 구조적 거동특성)

  • Joo, Hyung-Joong;Lee, Young-Geun;Lee, Dong-Hyuk;Yoon, Soon-Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.5
    • /
    • pp.559-569
    • /
    • 2012
  • Cross-beam in the existing temporary bridge system is usually installed to prevent the lateral-torsional buckling of girders and to promote the construction efficiency. However, most of this cross-beams are connected to the girder web by bolts, and therefore, gravitational load resisting capacity of the cross-beams are negligibly small. In recent years, new temporary bridge system, in which the cross-beams and girders are connected to resist the external loads as a unit, was developed. In this paper, we present the experimental and analytical study results pertaining to the structural behavior and load carrying capacity of new temporary bridge system. From the results of study, it was found that the continuous cross-beam increased the flexural rigidity and reduced the maximum flexural stress in the girder. In addition, it was also found that the new temporary bridge system developed is more appropriate for the application in the long-span temporary bridge.

Optimum Yaw Moment Distribution with ESC and AFS Under Lateral Force Constraint on AFS (AFS 횡력 제한조건 하에서 ESC와 AFS를 이용한 최적 요 모멘트 분배)

  • Yim, Seongjin;Lee, Jungjae;Cho, Sung Ik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.5
    • /
    • pp.527-534
    • /
    • 2015
  • This paper presents an integrated chassis control with electronic stability control (ESC) and active front steering (AFS) under lateral force constraint on AFS. The control yaw moment is calculated using a sliding mode control. The tire forces generated by ESC and AFS are determined using weighted pseudo-inverse based control allocation (WPCA) in order to generate the control yaw moment. On a low friction road, AFS is not effective when the lateral tire forces of front wheels are easily saturated. To solve problem, the lateral force of AFS is limited to its maximum and the braking of ESC is applied with WPCA. To evaluate the effectiveness of the proposed method, a simulation was performed on the vehicle simulation package, $CarSim^{(R)}$. From the simulation, it was verified that the proposed method could enhance the maneuverability and lateral stability if the lateral force of AFS exceeds its maximum.