• Title/Summary/Keyword: 횡방향 안정성

Search Result 97, Processing Time 0.021 seconds

Improvement of Hill Climbing Ability for 6WD/6WS Vehicle using Optimum Tire Force Distribution Method (최적 타이어 힘 분배를 이용한 6WD/6WS 차량의 등판 주행 성능 향상)

  • Kim, Sang-Ho;Kim, Chang-Jun;Han, Chang-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1523-1531
    • /
    • 2011
  • Multi-axle driving vehicle are favored for military use in off road operations because of their high mobility on extreme terrains and obstacles. Especially, Military Vehicle needs an ability to driving on hills of 60% angle slope. This paper presents the improvement of the ability of hill climbing for 6WD/6WS vehicle through the optimal tire force distribution method. From the driver's commands, the desired longitudinal force, the desired lateral force, and the desired yaw moment were obtained for the hill climbing of vehicle using optimal tire force distribution method. These three values were distributed to each wheel as the torque based on optimal tire force distribution method using friction circle and cost function. To verify the performance of the proposed algorithm, the simulation is executed using TruckSim software. Two vehicles, the one the proposed algorithm is implemented and the another the tire's forces are equivalently distributed, are compared. At the hill slop, the ability to driving on hills is improved by using the optimum tire force distribution method.

Dynamic Interaction Evaluation of Maglev Vehicle and the Segmented Switching System (자기부상열차 차량과 분기기 동적상호작용 시험 평가)

  • Lee, Jong-Min;Han, Jong-Boo;Kim, Sung-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.576-582
    • /
    • 2017
  • The switching system in a maglev train is an indispensable element for distributing train routes, and it should be designed to ensure safe operation. Unlike conventional wheels on rails, the switching track in EMS-type maglev is supported by a group of 3 to 4 steel girders. When the vehicle changes its route, the segmented track allows the girders to change from a straight position to a curved one with a small radius of curvature. Hence, the structural characteristics of the segmented switching system may affect the levitation stability of the maglev vehicle. This study experimentally evaluates the dynamic interaction between maglev vehicles and a segmented switching system. The results may be helpful for improving the switching system. The measured levitation and lateral air gaps were evaluated at a vehicle speed of 25 km/h, and the ride quality of the Maglev vehicle was determined to be "comfortable" according to the UIC 513 standard.

Three-Dimensional Limit Equilibrium Stability Analysis of Spile-Reinforced Shallow Tunnel

    • Geotechnical Engineering
    • /
    • v.13 no.3
    • /
    • pp.101-122
    • /
    • 1997
  • A spiting reinforcement system is composed of a series of radially installed reinforcing spites along the perimeter of the tunnel opening ahead of excavation. The reinforcing spill network is extended into the in-situ soil mass both radially and longitudinally The sailing reinforcement system has been successfully used for the construction of underground openings to reinforce weak rock formations on several occasions. The application of this spiting reinforcement system is currently extended to soft ground tunneling in limited occasions because of lack of reliable analysis and design methods. A method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground is presented. The shape of the potential failure wedge for the case of smile-reinforced shallow tunnel is assumed on the basis of the results of three dimensional finite element analyses. A criterion to differentiate the spill-reinforced shallow tunnel from the smile-reinforced deep tunnel is also formulated, where the tunnel depth, soil type, geometry of the tunnel and reinforcing spites, together with soil arching effects, are considered. To examine the suitability of the proposed method of threedimensional stability analysis in practice, overall stability of the spill-reinforced shallow tunnel at facing is evaluated, and the predicted safety factors are compared with results from twotimensional analyses. Using the proposed method of threetimensional limit equilibrium stability analysis of the smile-reinforced shallow tunnel in soft ground, a parametric study is also made to investigate the effects of various design parameters such as tunnel depth, smile length and wadial spill spacing. With slight modifications the analytical method of threeiimensional stability analysis proposed may also be extended for the analysis and design of steel pipe reinforced multi -step grouting technique frequently used as a supplementary reinforcing method in soft ground tunnel construction.

  • PDF

Analysis of Bed Change Caused by Hydraulic Structure Using 2-D model (수공구조물에 따른 2차원 모형을 이용한 하상변동 분석)

  • Son, Ah-Long;Son, In-Ho;Han, Kun-Yeun;Kwon, Taek-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.535-535
    • /
    • 2012
  • 하천 환경의 변화는 자연적으로 일어나기도 하지만, 우리나라 경우 대부분 하천 정비, 골재 채취, 수중보와 하구둑 등 하천시설물의 건설, 그리고 댐 및 교량건설 등 인위적인 요인에 의한 변화가 지배적이다 이렇게 환경이 변화하면 하천의 평형 상태는 파괴되며 하천의 평형 상태를 복원하는 과정에서 하천의 침식 또는 퇴적이 일어나며 이러한 과정의 총체적인 결과로서 하상변동이 일어나게 된다. 하상변동은 단기적인 면에서는 하천에서의 취수, 배수, 주운동 하천관리에 직접적인 영향을 주며, 장기적인 면에서는 하천시설물의 안정, 홍수위 및 지하수위 변화, 홍수터와 같은 하천부지의 변화 등 하천 및 유역 관리에 광범위한 영향을 주고 있다 하천의 유황 및 하상재료의 인위적인 변화에 의한 장기적인 하상변동 효과를 예측하고 분석하는 것은 하천계획 및 관리 면에서 매우 중요하다. 또한 하천 정비사업 등에 의한 영향을 제대로 평가하기 위해서는 비교적 단기간의 홍수 또는 호우 사상에 대한 단기적인 하상변동 효과를 정확하게 예측하는 것은 필수적이다. 외국에서는 하상변동 예측의 필요성을 일찍이 인식하여 다수의 하상변동 예측모형이 개발되어 하천 실무에 사용되고 있으며, 국내에서도 하천 흐름의 등수 역학적 해석을 위해 여러 가지 수치 기법들에 대한 연구가 진행되고 발전되어져 왔다. 현재 국내에서는 측량 자료이용과 모형적용의 용이성을 이유로 1차원 점변 부정류 해석프로그램인 HEC-RAS 모형을 많이 사용하고 있으며 대부분의 하천 정비 기본계획 수립에 있어서도 1차원 해석 모형을 적용하고 있는 실정이다. 국내에 서 수행된 하상변동 예측에 관한 연구들은 대부분 1차원 모형이므로 하천의 사행의 진행이나 유사의 횡방향 분포 등은 고려할 수 없다. 또한 하상변동 계산 시 이동상 부분의 전체가 균일하게 상승 또는 하향하는 것으로 가정하기 때문에 흐름이 급변하는 데 적용하는 것은 적합하지 않다. 따라서 본 연구에서는 4대강살리기 사업이 진행중인 낙동강유역 구미보지점을 대상으로 2차원 흐름 및 하상변동 수치모형인 CCHE2D 모형을 적용하여 50년, 100년, 200년 빈도별로 모의를 실시, 보설치 전 후의 하상변동을 비교 분석 하였다. 모의 결과 보설치 후의 경우 보 상류단은 전반적으로 퇴적의 양상을 보였으며, 보 하류단의 만곡부의 경우 홍수량이 증가함에 따라 유속 및 소류력이 비슷한 패턴으로 증가하여 침식이 관찰되었다. 특히 보 직하류의 경우 수문을 기준으로 다량의 침식이 있음을 보였으며, 침식이 계속 진행된다면 보유실과 같은 심각한 결과를 초래할 수 있기 때문에 침식을 방지 할 수 있는 다양한 장치가 마련되어야 할 것으로 판단된다.

  • PDF

Computational Approach for the Trade-Off Study between the Total Cost and the Member Connections in Steel Frames (강 뼈대구조물의 총 경비와 부재연결과의 상반관계에 관한 연구)

  • Choi, Byoung Han;Lim, Jung Hwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.19 no.1
    • /
    • pp.15-27
    • /
    • 2007
  • Over the past decade, labor costs have increased relative to the cost of material hardware according to analysts in the construction industry. Therefore, the minimum weight design, which has been widely adopted in the literature for the optimal design of steel structures, is no longer the most economical construction approach. Presently, although connection- related costs is crucial in determining the most cost-effective steel structures, most studies on this subject focused on minimum-weight design or engaged in higher analysis. Therefore, in this study, we proposed a fabrication scheme for the most cost-effective moment-resisting steel frame structures that resist lateral loads without compromising overall stability. The proposed approach considers the cost of steel products, fabrication, and connections within the design process. The optimal design considered construction realities, with the optimal trade-off between the number of moment connections and total cost was achieved by reducing the number of moment connections and rearranging them using the combination of analysis that includes shear, displacement and interaction value based on the LRFD code and optimization scheme based on genetic algorithms. In this study, we have shown the applicability and efficiency in the examples that considered actual loading conditions.

Development of Evaluation Method for Jointed Concrete Pavement with FWD and Finite Element Analysis (FWD와 유한요소해석을 이용한 줄눈콘크리트포장 평가법 개발)

  • Yun, Kyong-Ku;Lee, Joo-Hyung;Choi, Seong-Yong
    • International Journal of Highway Engineering
    • /
    • v.1 no.1
    • /
    • pp.107-119
    • /
    • 1999
  • The joints in the jointed concrete pavement provide a control against transverse or longitudinal cracking at slab, which may be caused by temperature or moisture variation during or after hydration. Without control of cracking, random cracks cause more serious distresses and result in structural or functional failure of pavement system. However, joints nay cause distresses due to its inherent weakness in structural integrity. Thus, the evaluation at joint is very important. and the joint-related distresses should be evaluated reasonably for economic rehabilitation. The purpose of this paper was to develop an evaluation system at joints of jointed concrete pavement using finite element analysis program, ILLI-SLAB, and nondestructive testing device. FWD. To develop an evaluation system for JCP, a sensitivity analysis was performed using ILLI-SLAB program with a selected variables which might affect fairly to on the performance of transverse joints. The most significant variables were selected from precise analysis. An evaluation charts were made for jointed concrete pavement by adopting the field FWD data. It was concluded that the variables which most significantly affect to pavement deflections are the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G), and limiting criteria on the performance of joints at JCP are 300pci. 500,000 lb/in. respectively. Using these variables and FWD test, a charts of load transfer ratio versus surface deflection at joints were made in order to evaluate the performance of JCP. Practically, Chungbu highway was evaluated by these evaluation charts and FWD field data for jointed concrete pavement. For Chungbu highway, only one joint showed smaller value than limiting criterion of the modulus of dowel/concrete interaction(G). The rest joints showed larger values than limiting criteria of the modulus of subgrade reaction(K) and the modulus of dowel/concrete interaction(G).

  • PDF

Stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas (황해 및 인접 지역 퇴적분지들의 구조적 진화에 따른 층서)

  • Ryo In Chang;Kim Boo Yang;Kwak won Jun;Kim Gi Hyoun;Park Se Jin
    • The Korean Journal of Petroleum Geology
    • /
    • v.8 no.1_2 s.9
    • /
    • pp.1-43
    • /
    • 2000
  • A comparison study for understanding a stratigraphic response to tectonic evolution of sedimentary basins in the Yellow Sea and adjacent areas was carried out by using an integrated stratigraphic technology. As an interim result, we propose a stratigraphic framework that allows temporal and spatial correlation of the sedimentary successions in the basins. This stratigraphic framework will use as a new stratigraphic paradigm for hydrocarbon exploration in the Yellow Sea and adjacent areas. Integrated stratigraphic analysis in conjunction with sequence-keyed biostratigraphy allows us to define nine stratigraphic units in the basins: Cambro-Ordovician, Carboniferous-Triassic, early to middle Jurassic, late Jurassic-early Cretaceous, late Cretaceous, Paleocene-Eocene, Oligocene, early Miocene, and middle Miocene-Pliocene. They are tectono-stratigraphic units that provide time-sliced information on basin-forming tectonics, sedimentation, and basin-modifying tectonics of sedimentary basins in the Yellow Sea and adjacent area. In the Paleozoic, the South Yellow Sea basin was initiated as a marginal sag basin in the northern margin of the South China Block. Siliciclastic and carbonate sediments were deposited in the basin, showing cyclic fashions due to relative sea-level fluctuations. During the Devonian, however, the basin was once uplifted and deformed due to the Caledonian Orogeny, which resulted in an unconformity between the Cambro-Ordovician and the Carboniferous-Triassic units. The second orogenic event, Indosinian Orogeny, occurred in the late Permian-late Triassic, when the North China block began to collide with the South China block. Collision of the North and South China blocks produced the Qinling-Dabie-Sulu-Imjin foldbelts and led to the uplift and deformation of the Paleozoic strata. Subsequent rapid subsidence of the foreland parallel to the foldbelts formed the Bohai and the West Korean Bay basins where infilled with the early to middle Jurassic molasse sediments. Also Piggyback basins locally developed along the thrust. The later intensive Yanshanian (first) Orogeny modified these foreland and Piggyback basins in the late Jurassic. The South Yellow Sea basin, however, was likely to be a continental interior sag basin during the early to middle Jurassic. The early to middle Jurassic unit in the South Yellow Sea basin is characterized by fluvial to lacustrine sandstone and shale with a thick basal quartz conglomerate that contains well-sorted and well-rounded gravels. Meanwhile, the Tan-Lu fault system underwent a sinistrai strike-slip wrench movement in the late Triassic and continued into the Jurassic and Cretaceous until the early Tertiary. In the late Jurassic, development of second- or third-order wrench faults along the Tan-Lu fault system probably initiated a series of small-scale strike-slip extensional basins. Continued sinistral movement of the Tan-Lu fault until the late Eocene caused a megashear in the South Yellow Sea basin, forming a large-scale pull-apart basin. However, the Bohai basin was uplifted and severely modified during this period. h pronounced Yanshanian Orogeny (second and third) was marked by the unconformity between the early Cretaceous and late Eocene in the Bohai basin. In the late Eocene, the Indian Plate began to collide with the Eurasian Plate, forming a megasuture zone. This orogenic event, namely the Himalayan Orogeny, was probably responsible for the change of motion of the Tan-Lu fault system from left-lateral to right-lateral. The right-lateral strike-slip movement of the Tan-Lu fault caused the tectonic inversion of the South Yellow Sea basin and the pull-apart opening of the Bohai basin. Thus, the Oligocene was the main period of sedimentation in the Bohai basin as well as severe tectonic modification of the South Yellow Sea basin. After the Oligocene, the Yellow Sea and Bohai basins have maintained thermal subsidence up to the present with short periods of marine transgressions extending into the land part of the present basins.

  • PDF