• Title/Summary/Keyword: 회항

Search Result 14, Processing Time 0.024 seconds

Efficacy of Genetic Adjuvant (Plasmid-Expressed Chicken Interleukin-6) and Chemical Adjuvant (Levamisole) on the Protective Immunity of Genetic Vaccine against Infectious Bursal Disease Virus (닭의 전염성 F낭병 바이러스 유전자백신에 의한 방어 면역에 Genetic Adjuvant (Chicken Interleukin-6)와 Chemical Adjuvant (Levamisole)의 효과)

  • Park, Jeong-Ho;Sung, Haan-Woo;Yoon, Byung-Il;Pak, Son-Il;Kwon, Hyuk-Moo
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.91-98
    • /
    • 2009
  • Infectious bursal disease (IBD) caused by the infectious bursal disease virus (IBDV) has an important economic impact on the poultry industry worldwide. This study examined the adjuvant effects of a plasmid encoding chicken interleukin-6 (pcDNA-ChIL-6) and levamisole (LMS) on in ovo prime-boost vaccination using a genetic vaccine (pcDNA-VP243) to prime in chicken followed by a killed-vaccine boost. A pcDNA-VP243 was injected into the amniotic sac alone or in combination with a pcDNA-ChIL-6 or LMS at embryonation day 18, followed by an intramuscular injection of killed IBD vaccine at 1 week of age. The chicken were orally challenged with very virulent IBDV (vvIBDV) strain at 3 weeks of age and observed for 10 days. No mortality was observed in the groups that received the pcDNA-VP243 alone and pcDNA-VP243 plus pcDNA-ChIL-6 or LMS compared to 100% mortality in unvaccinated challenge control group. However, as determined by bursal damage (the presence of IBDV RNA, B/B ratio, and lesion score), a pcDNA-VP243 alone group was superior to pcDNA-VP243 plus pcDNA-ChIL-6 or LMS groups in the protection against post-challenge. These findings suggest that in ovo priming with genetic vaccine and boosting with killed vaccine is an effective strategy for protecting chicken against vvIBDV and the addition of pcDNA-ChIL-6 or LMS did not enhance protective immunity.

CFD Simulation of the Self-propulsion of a damaged Car Ferry in Waves (손상된 카페리 선박의 파랑중 자항상태 CFD 해석)

  • Kim, Je-In;Park, Il-Ryong;Kim, Jin;Kim, Kwang-Soo;Kim, Yoo-Chul
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.1
    • /
    • pp.34-46
    • /
    • 2019
  • This paper provides the numerical results for the self-propulsion performance in waves of a car ferry vessel with damage in one of its twin-screw propulsion systems without flooding the engine room. The numerical simulations were carried out according to the Safe Return to Port (SRtP) regulation made by the Lloyd's register, where the regulation requires that damaged passenger ships should have an ability to return to port with a speed of 6 knots in a Beaufort 8 sea condition. For the validation of the present numerical analysis study, the resistance performance and the self-propulsion performance of the car ferry in intact and damaged conditions in calm water were calculated, which showed a satisfactory agreement with the model test results of Korea Research Institute of Ship and Ocean engineering (KRISO). Finally, the numerical simulation of self-propulsion performance in waves of the damaged car ferry ship was carried out for a normal sea state and for a Beaufort 8 sea state, respectively. The estimated average Brake Horse Power (BHP) for keeping the damaged car ferry ship advancing at a speed of 6 knots in a Beaufort 8 sea state reached about 47% of BHP at MCR condition or about 56% of BHP at NCR condition of the engine determined at the design state. In conclusion, it can be noted that the engine power of the damaged car ferry ship in single propulsion condition is sufficient to satisfy the SRtP requirement.

Crack Propagation Analysis for IMO Type-B Independent Tank with Liquefied Natural Gas Carrier (LNG 운반선에 적용된 독립형 탱크의 균열 진전 해석에 관한 연구)

  • Kim, Beom-il;Shafiqul, Islam MD
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.4
    • /
    • pp.529-537
    • /
    • 2021
  • Membrane-type hull and cargo holds have been designed and built for large ship. However, there is a growing interest in applying the same technology to small and medium-sized Liquefied natural gas(LNG) carriers to meet the recent increase in demand for LNG as an ecofriendly fuel and for expanding LNG bunkering infrastructure. The purpose of this study is to apply the IMO Type-B tank to small and medium-sized LNG carriers and verify the safety and suitability of the design. Fatigue crack propagation analysis was performed to install a partial second drip tray installed at the lower part of the LNG cargo tank by calculating the amount of leaked gas in the support structure supporting the cargo tank. First, a program for fatigue crack propagation analysis was developed, in which Paris' law and British Standard 7910 (BS 79110) were applied based on the International Code for the Construction of Equipment and Ships Carrying Liquefied Gases in Bulk, an international standard for LNG carriers. In addition, a surface crack propagation analysis was performed. Next, a methodology for assuming the initial through-crack size was developed to determine the size of the partial second barrier. The analysis was performed for 15 days, which is a possible return time after cracks are detected. Finally, the safety and suitability of the IMO Type-B for LNG cargo tanks required by international regulations were verified. For the accurate analysis of fatigue crack propagation, it is necessary to develop and verify the analysis procedure based on direct analysis and international regulations.

Estimation of Greenhouse Gas Emissions During the Construction of Jangbogo Antarctic Research Station (남극 장보고기지 건설 시 온실가스 배출량 산정)

  • Joo, Jin Chul;Yun, Jeongim;Lee, Seungeun;Kim, Yu-Min;Chae, Chang-U;Kim, YoungSeok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.4
    • /
    • pp.270-279
    • /
    • 2012
  • In this study, greenhouse gas emissions occurring from the construction of Jangbogo Antarctic research station were estimated in terms of material production stages and building stages, respectively. In detail, greenhouse gas emissions during the building stages were estimated in terms of marine transportation, inland transportation, construction equipment utilization, and construction camp operation, respectively. As a result, greenhouse gas emissions from material production stages with life cycle assessment were 8,933 ton (as $CO_{2eq}$), equivalent to the 23.8% of total greenhouse gas emissions from the construction of Jangbogo Antarctic research station, and these results indicate that greenhouse gas emissions occurring from material production stages should not be ignored. During the building stages, greenhouse gas emissions occurring from first year were greater than those from second year due to the increase in fuel consumption of freighter during second year. Additionally, marine transportation compared to inland transportation, construction equipment utilization, and construction camp operation was found to be the greater contributor for greenhouse gas emissions during the building stages. The total greenhouse gas emissions estimated from both material production stages and building stages was 34,486 ton (as $CO_{2eq}$), and greater than those estimated from comprehensive environmental evaluation (CEE) of existing other research stations. This difference is mainly attributed from approximate estimation of greenhouse gas emissions of existing other research stations without considering material production stages.