• Title/Summary/Keyword: 회절 격자 표식

Search Result 2, Processing Time 0.022 seconds

Multi-Degree-of-Freedom Displacement Measurement of a Rigid Body Using a Diffraction Grating as a Cooperative Target (회절 격자 표식을 이용한 강체의 다자유도 변위 측정)

  • Kim, Jong-Ahn;Bae, Eui-Won;Kim, Kyung-Chan;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.415-419
    • /
    • 2000
  • Multi-degree-of-freedom (MDOF) displacement measurement Is needed In many application fields: precision machine control, precision assembly, vibration analysis, and so on. This paper presents a new MDOF displacement measurement method using a laser diode (LD), two position-sensitive detectors (PSDs), and a conventional diffraction grating. It utilizes typical features of a diffraction grating to obtain the information of MDOF displacement. MDOF displacement is calculated from the independent coordinate values of the diffracted ray spots on the PSDs. Forward and inverse kinematic problems were solved to compute the MDOF displacement of a rigid body. Experimental results show maximum absolute errors of less than ${\pm}10$ micrometers in translation and ${\pm}30$ arcsecs in rotation.

  • PDF

Optical Error Analysis and Compensation of Six Degrees of Freedom Measurement System Using a Diffraction Grating Target (회절 격자 표식을 이용한 6자유도 측정 시스템의 광학적 오차 해석 및 보상)

  • Kim, Jong-Ahn;Bae, Eui-Won;Kim, Soo-Hyun;Kwak, Yoon-Keun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.2
    • /
    • pp.152-160
    • /
    • 2001
  • Six degrees of freedom measurement systems are required in many fields: Precision machine control. precision assembly, vibration analysis, and so on. This paper presents a new six degrees of freedom measurement system utilizing typical features of a diffraction grating. It is composed of a laser source, three position sensitive detectors, a diffraction grating target, and several optical components. Six degrees of freedom displacement is calculated kinematically from the coordinates of diffracted rays on the detectors. Optical measurement error was caused by the fact that a laser source had a Gaussian intensity distribution. This error was analyzed and compensated using simple equations. The performance of the compensation equation was verified in the experiment. The experimental results showed that the compensation equation could reduce the optical measurement error remarkably and the error in six degrees of freedom measurement less than $\pm$10$\mu$m for translation and $\pm$0.012$^{\circ}$for rotation.

  • PDF