• Title/Summary/Keyword: 회전 히트파이프

Search Result 18, Processing Time 0.027 seconds

The Heat Transfer Characteristics of Rotating Heat Pipe with Tapered Condensers in the both Sides of Evaporator (증발부 양단에 테이퍼 응축기를 가진 회전형 히트파이프의 전열 특성)

  • 이기우;이영수;장기창;장영석
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-25
    • /
    • 1996
  • The purpose of this paper is to study heat transfer characteristics of rotating heat pipe with tapered condensers by numerical analysis and experimental method. An experimental investigation has been carried out on thermal resistance between condenser wall and vapor region fo the rotating heat pipe with various taper 0, 1/11.4, 1/38. Heat transfer characteristics by analytical study were applied to describe various Nu numbers on the base of dimensionless condensate film, Re and Pr numbers in both condensers. Comparison between calculated results and experimental data showed qualitatively good agreement and the numerical analysis of this study can be utilized to predict the performance of a rotating heat pipe. The thermal resistance can be decreased by increasing the revolution per minute. Regardless of various dimensionless condensate film, Nu number was largely influenced by saturation temperatures of working fluid.

  • PDF

An experimental study on the effects of an inserted coil on flow patterns and heat transport performances for a horizontal rotating heat pipe (수평 회전 히트파이프에서 내부 삽입 코일이 유동 형태 및 열전달 성능에 미치는 영향에 대한 실험 연구)

  • 이진성;김철주;김선주;문석환
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.10 no.6
    • /
    • pp.763-772
    • /
    • 1998
  • The effects of an inserted coil on flow patterns and heat transport performance for a horizontal rotating heat pipe have been studied experimentally. Especially, the present study is to see an internally inserted helical coil inside a RHP would lead to the same kind of results as internal fins. Visualization test conducted for an acryl tube, charged water with at a volumetric rate of 20%. When the flow kept pool regime at a low RPM(less than 1,000 RPM), the movement of coil forced the water to flow in axial direction. But this pumping effect of coil disappeared, when the pool regime changed to annular one which could be created by increasing RPM. The pumping effects for RHP with an inserted coil resulted enhancement both in condensation heat transfer coefficient and heat transport limitation, as obtained in case of using internal fins. But all these effects became negligible in the range of higher RPM(above 1,000∼1,200) with the transition of flow regime to annular flow.

  • PDF

A Study on the Internal Flow Patterns and Heat Transfer Characteristics for a Cylindrical Rotating Heat Pipe (원통형 회전 히트파이프의 내부 유동 및 열전달 특성에 관한 연구)

  • Lee, Jin Sung;Lee, Jae Jun;Kim, Chul Ju
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1217-1228
    • /
    • 1998
  • In order to elucidate the operational characteristics of rotating heat pipes, the internal flow patterns and heat transfer performance are investigated. Flow patterns and its transition are studied with various rotational speeds by visualizing flows established inside a rotating tube. To verify those results of analysis, 2 heat pipes of the same geometries but fill charge rates of 7, 30% were manufactured and submitted to operating tests. Comparison of experimental results on heat transfer rate show a fairly good agreement with the analytical results. The analysis reveals that the optimum charge ratio is ranged in 4~7% depending on the quantity of thermal loads. but the heat pipe with 7% of fill charge ratio reached dry-out limitation at heat flux of $q^{{\prime}{\prime}}=6.2kW/m^2$ lower than that of analytic results. Transition of flow regime was well related to the correlation by Semena & Khmelev on transient centrifugal Froude Number Frc. But hysteresis phenomenon was observed in transition of flow regime, when the rotational speed was stepwisely changed in the way to undergo 1 cycle.

A Study on the Condensation Heat Transfer Characteristics of a Loop Heat Pipe Heat Exchanger for High Speed Rotary Shaft Cooling (고속 회전축 냉각용 루우프 히트파이프 열교환기의 응축열전달 특성에 관한 연구)

  • Cho, Dong-Hyun;Lee, Jong-Sun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.4
    • /
    • pp.147-152
    • /
    • 2017
  • In the present study, we used a loop thermosyphon heat exchanger consisting of condensers with internal fins and external plate fins which are 480 mm wide, 68 mm long, and 1,000 mm high. The heat transfer pipes in the heat exchanger were 15 mm in diameter and 1,000 mm in length, and 98 heat transfer pipes were installed in the heat exchanger. According to the experimental results, as the spaces between the internal discontinuous pins decreased, the frequency of pressure drops increased and changes in temperature at the outlet of the condenser were shown to be a little smaller. Therefore, we can see that as the spaces between internal discontinuous pins decreased, the heat transfer performance increased. For the loop heat pipe heat exchanger consisting of a condenser with internal and plate fins, as the temperature of the air flowing into the condenser increased, the condensation heat transfer rate also increased, and as the condenser refrigerant inflow temperature increased, the condensation heat transfer rate increased as well.

Performance Test and Development of the Composite Heat Pipe with Rotating and Static Heat Pipe (회전.비회전 복합 히트파이프 개발과 성능 시험)

  • Lee, Y.S.;Jang, Y.S.
    • Solar Energy
    • /
    • v.18 no.4
    • /
    • pp.101-110
    • /
    • 1998
  • The purpose of this research is to study the charateristics and manufacture of a composite heat pipe system with rotational and static pipe. A composite heat pipe system were tested to obtain the relationship between the expansion injector and auxiliary expansion for the motion of the working fluid by the experimental results. In addition the heat transport characteristics were found based on wall temperature of rotor, expansion injector, storage tank and vapor temperature. Water is used as working fluid of heat pipes. As the results of experiments, the composite heat pipe was operated for long times, 10 hour above with various rotational speed in performance. There were a few unexpected data by the capillary pumped loop at small working fluid, but as a whole the testing was successful.

  • PDF

A Study on Heat Transfer Characteristics of Separate Type Heat Pipe with a Rotor (회전자를 갖는 분리형 히트파이프의 열전달특성에 관한 연구)

  • Jun, C.H.;Kim, O.G.
    • Solar Energy
    • /
    • v.20 no.3
    • /
    • pp.75-84
    • /
    • 2000
  • The purpose of this research is to study on the heat transfer characteristics of separate type heat pipe with a rotor. The heat transfer characteristics of the rotor condenser are various on input heat of evaporator, rotational speeds of rotor, and working fluid amount. The results obtained from the study are as follows. 1. Magnetic fluid using seal of the rotor operated in stability by a variation of temperature and rotation speeds. The configuration of magnetic fluid seal assembly was adequate. 2. Steam ejector is effective in recovering working fluid condensate in the rotor. When steam ejector is operating, the heat flux of working fluid does not change, with the wall temperature in the rotor. 3. The optimum design conditions on working fluid amount and rotational speeds are effective in evaporator volume 50%, rotational speeds 200rpm, 300rpm, and operating temperature $80^{\circ}C$. With working fluid amount increasing, overall heat transfer coefficient decreases linearly.

  • PDF

Waste Heat Recovery by Heat Pipe Heat Exchanger in Spray Dryer (분무건조장치에서의 히트파이프식 열교환기의 폐열회수)

  • 박기호;이기우;박준택;이계중;임상근
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.11a
    • /
    • pp.193-198
    • /
    • 2000
  • 분무건조장치는 Solution, Slurry, Emulsion, Colloidal Suspension 등의 액상원료를 미립화하여 표면적을 증가시켜 수열면적을 크게 하여 열풍과 직접 접촉함으로써 순간적으로 건조를 행하여 액상원료로부터 바로 분립상의 제품을 얻는 건조법이다. 분유를 비롯하여 Instant 식품류, 합성세제, 염료, 안료, Ceramic, 공해 폐액의 처리에 이르기까지 폭넓게 이용되고 있다. 분무건조기는 통기, 회전, 기류 건조기 등 다른 건조기에 비하여 고도의 설계 및 제작 기술을 요하며, 설계에 있어서 일부 이론적인 취급이 행해지고 있는 것은 사실이나 아직은 경험에 의존하고 있는 현실이다. 국내에서 제작되고 있는 분무건조기의 열효율은 25-33%로 선진국의 35-48%에 비해 매우 낮다. 국내에서 사용되고 있는 분무건조기의 92%는 덴마크, 일본 등에서 수입된 것이다.(중략)

  • PDF