• Title/Summary/Keyword: 회전 유체

Search Result 513, Processing Time 0.03 seconds

Numerical Analysis of HAT Tidal Current Rotors (수평축 조류발전로터 성능실험의 수치적 재현과 연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.620-623
    • /
    • 2009
  • 여러 해양에너지 중 유체의 빠른 흐름을 이용하는 조류발전은 서해안과 남해안에 적용하기에 적합하며 해양환경의 영향을 최소화 하면서 많은 에너지를 연속적으로 생산할 수 있는 장점이 있다. 조류발전에서 1차적으로 에너지를 변환시키는 로터는 조류발전시스템의 주요한 장치중의 하나로 여러 변수에 의해 그 성능이 결정된다. 블래이드 수, 형상, 단면적, 허브, 직경 등 여러 요소를 고려하여 로터를 설계하며, 설계정보와 실험데이터를 바탕으로 수치모델을 구현하여 실험에서 직접 계측할 수 없는 로터 주변의 유체현상 및 간섭영향 등을 예측할 수 있다. 본 논문에서는 변화하는 유속에 따른 HAT 로터의 시동속도, 회전수를 측정하여 로터 형상과 허브-직경비가 다른 로터의 성능을 고찰하고, 이를 수치모델로 구현하여 로터주변 유동변화를 연구하였다.

  • PDF

The analysis of drag in the multi-clutch, Design proposal (다판 클러치의 Drag 분석, 설계 제안)

  • 곽희성;김정훈;정삼석;강영선;남상일
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2003.07a
    • /
    • pp.134-139
    • /
    • 2003
  • 오늘날 산업용 차량은 대부분 유압식 클러치를 채택하여 사용하고 있다 유압식 클러치는 운전자가 손쉽게 엔진으로부터 동력을 바퀴까지 전달 또는 차단하는 기능을 갖고 있기 때문이다. 차량속도에 대한 운전자의 다양한 요구는 다수의 변속 단수를 갖는 기어트레인이나 연속가변식 변속기(CVT) 원하고 있다. 그 중에 기어단을 단속하는 클러치는 엔진의 회전력과 차량 관성력을 효과적으로 연결 또는 차단을 위해 다수의 마찰판과 유체압력을 이용하여 작동된다. 유압식 클러치는 동작방식에 따라서 유체압력이 작동하면 동력을 전달하는 POSITIVE방식과 자체 탄성 스프링력에 의해서 동력을 전달하는 NEGATIVE방식이 있다. POSITIVE방식 유압식 클러치는 동력전달시 어큐뮬레이터를 이용하여 충격을 줄이고, 부하 변동시 승차감각을 향상할 수 있는 장점이 있다 TRX500 트랙터에 사용되는 유압식 클러치는 POSITIVE방식을 채택하고 있다. (중략)

  • PDF

A Study on the Performance of a Centrifugal Pump with Two-Phase Flow (기-액 2상유동에 따른 원심펌프 성능변화에 대한 연구)

  • Lee, Jong C.;Kim, Youn J.;Kim, C.-S.
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.12-18
    • /
    • 2000
  • In this study, experimental and numerical analyses are carried out to investigate the performance of centrifugal pump with various air admitting conditions. Experiments on the pump performance under air-water two-phase flow are accomplished using a centrifugal pump with semi-open type impeller having three, five and seven blades, respectively. Also, the numerical analysis of turbulent air-water two-phase flow using the finite volume method has been carried out to obtain the pressure, velocities and void fraction on the basis of a so-called bubbly flow model with the constant size and shape of cavity. The results obtained through this study show the reasonable agreements within the range of bubbly flow regime. There are promising developments concerning application of the present study for the flow in a centrifugal pump with two-phase flow conditions and efforts must be followed to improve the turbulence model and two-phase flow model for turbomachinery.

  • PDF

Model Updating Using Radial Basis Function Neural Network (RBF 신경망을 이용한 모델개선법)

  • Kim, Kwang-Keun;Choi, Sung-Pil;Kim, Young-Chan;Yang, Bo-Suk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.3 s.8
    • /
    • pp.19-24
    • /
    • 2000
  • It is well known that the finite element analysis often has an inaccuracy when it is in conflict with test results. Model updating is concerned with the correction of analytical model by processing records of response from test results. The famous one of the model updating methods is FRF sensitivity method. However, it has demerit that the solution is not unique. So, the neural network is recommended when an unique and exact solution is desired. The generalization ability of radial basis function neural network is used in model updating. As an application model, a cantilever and a rotor system are used. Specially the machined clearance($C_p$) of a journal bearing is updated.

  • PDF

Rotordynamic Effects Due to Aerodynamic Instability in a Turbo-compressor with Air Foil Bearings (공기 포일 베어링으로 지지되는 터보 압축기의 공력 불안정성이 로터에 미치는 진동 영향)

  • Kim, Tae-Ho;Lee, Yong-Bok;Kim, Chang-Ho;Lee, Nam-Soo;Kim, Kwang-Ho;Shin, You-Hwan
    • The KSFM Journal of Fluid Machinery
    • /
    • v.6 no.2 s.19
    • /
    • pp.62-69
    • /
    • 2003
  • An oil-free turbo-compressor supported by compliant foil bearings which remove oil-contamination by elimination of a conventional ball bearing and oil lubrication systems is presented. Turbo-compressor makes two individual air compressions with two impellers at a operating speed of 39,000 rpm. In this study, the rotordynamic effects caused by aerodynamic instability were investigated with variable mass flow rates. Correlations between frequencies of pressure fluctuation in two diffusers and those of excitation forces on rotor were clearly observed in an aerodynamic unsteady region. Thus, these results show that it is beneficial to design high-speed rotating turbomachinery by considering coupling effect between aerodynamic instability and rotordynamic force.

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong-Kee;Koo, Hyun-Chul;Cha, Bong-Jun;Yang, Soo-Seok;Lee, Dae-Sung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.27-32
    • /
    • 2002
  • The turbopump inducer cavitation is very important for the success of a liquid rocket engine. In this study, the performance test and cavitation performance test were carried out at various rotational speeds with two inducers of different diameter. The rotational speed was varied by 4000, 6000, and 8000 rpm, and the size effect was tested for the normal inducer and twice-enlarged one. The hydraulic performance results showed that the similarity was satisfied over the entire test range of the present study. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for the large tip clearance. The cavitation performance test results showed that the breakdown NPSH increased as the flow coefficient, and was not affected by the rotational speed.

Design and Operation Characteristics of a Two-Stage Compressor (이단 압축기의 동력학적 설계 및 운전 특성에 관한 연구)

  • Lee, Yong-Bok;Kim, Tae-Ho;Kim, Chang-Ho;Lee, Nam-Soo;Choi, Dong-Hoon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.5 no.1 s.14
    • /
    • pp.55-61
    • /
    • 2002
  • The feasibility of an oil-free, motor-driven, two-stage centrifugal compressor supported by air bump bearings is investigated. This centrifugal compressor is driven by a 75 kW motor at an operating speed of 39,000 RPM, and a pressure ratio of the compressor is set up to 4. The analysis is performed by using bearing equilibrium position, heaving stillness, Campbell diagram, unbalance response, and stability. It is demonstrated in this paper that air bump bearings can be adopted well to an oil-free, motor-driven, centrifugal compressor. Specially, Cu-coated bump bearings have enough damping force to reduce a synchronous unbalance for rigid modes of the two-stage compressor. Futhermore, this concept may be applied to the flexible rotor system such as high speed turbomachinery with a super critical speed.

The Effect of the Diameter and Rotational Velocity on the Cavitation Performance of a Turbopump Inducer (터보펌프 인듀서의 흡입성능에 대한 직경과 회전속도의 영향)

  • Sohn, Dong Kee;Koo, Hyun Chul;Cha, Bong Jun;Yang, Soo Seok;Lee, Dae Sung
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.229-234
    • /
    • 2001
  • The turbopump inducer cavitation is very important for the success of a Liquid rocket engine. In this study the performance test and cavitation performance test were carried out at various rotational speed with two different diameter inducers. The rotational speed were varied 4000, 6000, 8000 rpm and the variation to the diameter of an inducer were taken as design size and 2 times enlarged size. The major results of the present study were as follows. 1. The hydraulic performance results showed that the similarity was met over the entire test range of the present study. 2. The blade thickness effect was examined and showed that the increased blade thickness resulted in decreased efficiency and worse cavitation performance for large tip clearance. 3. The cavitation performance test results showed that the breakdown NPSH increases as the flow coefficient and does not affected by the rotational speed.

  • PDF

Design and Operation Characteristics of A Two-Stage Compressor (이단 압축기의 동력학적 설계 및 운전 특성에 관한 연구)

  • Lee, Yong-Bok;Lee, Nam-Soo;Kim, Tae-Ho;Kim, Chang-Ho;Choi, Dong-Hoon
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.469-474
    • /
    • 2001
  • The feasibility of a oil-free motor-driven two-stage centrifugal compressor supported by air bump bearings is investigated. This centrifugal compressor is driven by 75kW motor at an operating speed of 39,000RPM md a pressure ratio of the compressor is up to 4. The analysis is performed, based upon bearing equilibrium position, bearing stiffness, Campbell diagram, unbalance response and stability. It is demonstrated in this paper that air bump bearings can be adopted well to a oil-free motor-driven centrifugal compressor.

  • PDF

An Optimum Design of the Compressor Wheel and the Rotor-Bearing System of a Two-Stage Compressor (이단 압축기의 임펠러 및 시스템에 대한 최적설계)

  • Lee, Yong-Bok;Kim, Jong-Rip;Choi, Dong-Hoon;Kim, Kwang-Ho;Kim, Chang-Ho
    • 유체기계공업학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.129-134
    • /
    • 2001
  • The paper presents the optimal design of a oil-free two-stage compressor, which is driven by 75 kW motor at an operating speed of 39,000 rpm, and the pressure ratio of which is up to 4. First, an attempt is made to obtain the optimal design of a bump bearing which supports a compressor rotor. Second, bump bearings and shaft are considered simultaneously, and the weighted sum of rotor weight and frictional torque is minimized. Finally, the optimal geometry of compressor wheel is considered. The mean efficiency and the - minimum efficiency are maximized respectively. The results presented in this paper provide important design information necessary to reduce the energy loss.

  • PDF