• Title/Summary/Keyword: 회전 스크롤

Search Result 23, Processing Time 0.017 seconds

Mass Flow Rate Measurement of Pulsating Flow in a Twin-Scroll Turbocharger (트윈스크롤 터보과급기에서 맥동유동의 질량유량 측정)

  • Chung, Jin-Eun;Jeon, Se-Hun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.723-729
    • /
    • 2019
  • Turbochargers are an effective device to reduce the fuel consumption. In this study, the mass flow rate of pulsating flow in the twin-scroll turbocharger for the gasoline engine of passenger vehicles was measured. Pulsating flow was achieved using a pulse generator and the mass flow rate of the unsteady pulsating flow was analyzed by comparing it with those of the steady flow. The pulse generator consisted of a rotating upper plate and a fixed lower plate. To measure the mass flow rate of unsteady flow, the orifice flow meter equipped with the difference pressure transducer was used. To analyze the low speed performance of the turbocharger, the measurement was carried out in the speed of turbocharger from 60,000rpm to 100,000rpm. The mass flow parameters of the unsteady pulsating flow showed a large difference compared to those of the steady flow. Those of the unsteady flow showed the hysteresis loop surrounding the mass flow parameters of the steady flow and the maximum variation of the mass flow parameters were 5.0 times those of the steady flow. This phenomenon is the result of the filling and emptying the turbine volute space due to pulsating flow.

Upgrade Development of a Centrifugal Compressor for Marine Engine Turbochargers (선박용 터보차져 원심압축기의 성능향상 개발)

  • Oh, Jong Sik;Oh, Koon Sup;Yoo, Kwang Taek
    • The KSFM Journal of Fluid Machinery
    • /
    • v.3 no.1 s.6
    • /
    • pp.43-50
    • /
    • 2000
  • Upgrade development of a high pressure ratio centrifugal compressor in marine engine turbochargers is presented. A new matched operating point at increased speed of rotation was determined through system cycle analysis using the exisitng test data of turbine performance. Under some severe restrictions for geometric parameters, the state-of-the-art methods of both aerodynamic design and CFD analysis were applied, in which only an impeller, a vaned diffusor and some part of casing wall were modified. Prototype hardware was fabricated and assembled for system performance tests. Excellent performance in pressure ratio and efficiency was obtained over whole speed region. Reduced surge and choke margin was, however, observed at design speed of rotation.

  • PDF

Performance Analysis by CFD and Aerodynamic Design of 100kW Class Radial Turbine Using Waste Heat from Ship (선박 폐열을 이용한 100kW급 구심터빈 공력설계 및 CFD에 의한 성능해석)

  • Mo, Jang-Oh;Kim, You-Taek;Kim, Mann-Eung;Oh, Cheol;Kim, Jeong-Hwan;Lee, Young-Ho
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.35 no.2
    • /
    • pp.175-181
    • /
    • 2011
  • The purpose of this study is to secure the design data for the optimization of the radial turbine and heat cycle system, by using the CFD analysis technique and the design of 100kW class radial turbine applicable to waste heat recovery generation system for ship. Radial turbine was comprised of scroll casing, vane nozzle with 18 blades and rotor with 13 blades, and analysis grid was used to about 2.3 million. Mass flow rate and rotational speed was 0.5kg/s, 75,0000rpm, respectively. Eight kinds of inlet pressure was set between 195 and 620kPa. As the flow accelerated through the nozzle passage to the throat, the pressure level at the pressure and suction sides becomed similar to about Mach number of 0.35. When the inlet temperature and pressure was $250^{\circ}C$, 352kPa respectively, the isentropic efficiency and mechanical power showed the analysis results of 74% and 108kW.