• Title/Summary/Keyword: 회전전조압연

Search Result 2, Processing Time 0.015 seconds

Design of Cross Wedge Rolling Die for a Non-heat-treated Cold Steel using CAD and CAE (CAD/CAE를 이용한 냉간 비조질강용 회전전조 금형설계)

  • Lee H. W.;Yoon D. J.;Lee G. A.;Choi S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.05a
    • /
    • pp.400-403
    • /
    • 2004
  • A non-heat기leafed steel does not need quenching and tempering processes that are called a heat treatment differently from conventional steel. Since the tensile strength of this steel is higher than 900MPa, a conventional forming process should be changed to incremental forming process such as a cross wedge rolling that requires lower load capacity than conventional ones. In this paper, the cold cross wedge rolling (CWR) die has been designed using CAD/CAE In order to produce near-net-shaped component of ball stud of non-heat-treated cold steel. Finite element analyses were applied in order to investigate process parameters of CWR. Results provide that the stretching angle and the forming angie at knifing zone in CWR process is important parameter to be the stable process under the low friction coefficient condition.

  • PDF

Experimental Study for Enhancement of Material Strength In Cold Cross Wedge Rolling Process (냉간 전조압연 공정에서의 성형조건에 따른 재료의 물성변화분석)

  • Yoon D. J.;Kim I. H.;Choi S. O.;Lim S. J.;Lee H. W.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2004.10a
    • /
    • pp.319-324
    • /
    • 2004
  • Cross wedge rolling process is utilized to manufacture multi-stepped axis symmetrical parts. This process is generally performed under high temperature conditions in order to induce serious deformation. But cold cross wedge rolling process has been rarely studied due to the limits of deformation. Recently, the cold cross wedge rolling process has been utilized to enhance the material strength in specified parts of manufactured products. In this paper, experimental researches were carried out with various forming conditions of cold cross wedge rolling process in order to suggest the design guidance to make preform for cold cross wedge rolling. The tensile strength and the surface hardness of specified region were compared to that of initial material with the variation of the area reduction and the rotational speed of rolling die. With respect to the area reduction, the maximum tensile strength was linearly increased and the surface hardness was rapidly increased within lower percent of area reduction. The surface hardness was saturated over the rotational die speed of 0.8 RPM.

  • PDF