• Title/Summary/Keyword: 회전연료분사장치

Search Result 13, Processing Time 0.023 seconds

The Study of Spray Characteristics for the High Speed Rotating Fuel Injection System (고속회전 연료분무장치의 분무특성연구)

  • Choi, Hyung-Kyung;Choi, Chea-Hong;Choi, Seong-Man;Lee, Dong-Hun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.04a
    • /
    • pp.53-57
    • /
    • 2007
  • 고속회전의 원심력으로 연료를 공급하고 액체연료의 미립화를 초래하는 회전연료분무장치에 대한 분무특성 시험연구를 수행하였다. 특정한 공간상에 존재하는 액적의 특성을 이해하고자 고속회전 연료분사시스템을 설계 제작하였다. 시험장치는 고속으로 회전하는 Spindle, 회전연료노즐, 가압식 물탱크, 아크릴 케이스로 구성하였다. 액적의 크기와 속도를 측정하기 위해 PDPA(Phase Doppler Particle Analyzer)시스템을 사용하였고, ND-Yag Laser를 사용하여 분무를 가시화 하였다. 시험결과 고속회전 연료분사시스템의 분무특성을 확인할 수 있었고, 회전속도는 액적 크기, 속도, 분무각 및 분무패턴 등의 분무특성에 주요한 영향을 미치는 것으로 확인되었다.

  • PDF

Design and Computer Control of a Sliding Mode Fuel-Injection Controller for MPI Gasoline Engines (MPI 가솔린 엔진용 슬라이딩 모드 연료분사 제어기 설계 및 컴퓨터 제어)

  • 김종식;고용서;강건용;황이철
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.15 no.3
    • /
    • pp.1030-1043
    • /
    • 1991
  • 본 연구에서는 모델링오차나 외란 등의 불확실성에도 강인한 슬라이딩 모드 제어방법을 이용하여 새로운 연료분사 제어기를 설계하였다. 그리고 8253 타이머와 A/D 변환기, 인터페이스회로 등으로 MPI가솔린 엔진용 전자 제어장치를 실제 엔진에 적용시킴으로써 새로이 설계된 연료분사 제어시스템의 성능을 파악하였다.엔진의 운전상태를 여러가지 제어 모드로 분류할 수 있으나 엔진회전수가 2000rpm, 부하가 20N의 일정한 부하 조건에서 엔진회전수를 1500rpm에서 2000rpm으로 변화시켰을 때의 과도상태 응답을 파악하였다. 이와 같이 새로운 슬라이딩 모드 연료분사 제어시스템 을 개발하여 3원촉매 변환기의 변환효율을 극대화함으로써 배기가스의 유해물질을 최 소화하는 것을 본 연구의 목적으로 하였다.

Disintegration Process of the Rotating Fuel Injector (회전연료 분사시스템의 분열과정)

  • Jang, Seong-Ho;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.171-174
    • /
    • 2008
  • This paper presents disintegration process of the small rotational fuel injector. In order to understand disintegration precess, we measured droplet diameter, velocity and spray distribution by the PDPA(Phasse Doppler Particle Analyzer) system. Also spray was visualized by using Nd-Yag flash photography. From the test results, the liquid column emerging from the injection orifice is mainly controlled by the rotational speeds. Furthermore, droplet diameter(SMD) and spray distribution were strongly influenced by the diameter of the injection orifice.

  • PDF

A Study of Spray Characteristics of the Rotating Fuel Nozzle with Orifice Diameters (회전연료노즐의 오리피스직경에 따른 분사특성연구)

  • Lee, Mae-Hoon;Jang, Seong-Ho;Lee, Dong-Hun;Choi, Seong-Man
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.5
    • /
    • pp.51-56
    • /
    • 2010
  • An experimental study was performed to understand spray characteristics of the V type rotating fuel nozzle with orifice diameters by using high speed rotational system. The experimental apparatus consist of a high speed rotational system, fuel injection system and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, droplet size is reduced with increasing orifice diameter up to the critical value. When increasing orifice diameter over than this critical value, droplet size is not decreased with increasing the orifice diameter. This is due to the irregular distribution of the liquid sheet around the inner surface of injection orifice.

A Study of Spray Characteristics of the Rotating Fuel Nozzle with Orifice Diameters (회전연료노즐의 오리피스직경에 따른 분사특성연구)

  • Lee, Mae-Hoon;Jang, Seong-Ho;Lee, Dong-Hun;Choi, Seong-Man
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.258-263
    • /
    • 2010
  • An experimental study was performed to understand spray characteristics of the V type rotating fuel nozzle with orifice diameters by using high speed rotational system. The experimental apparatus consist of a high speed rotational system, fuel injection system and acrylic case. The droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and spray was visualized by using Nd-Yag laser-based flash photography. From the test results, droplet diameters are reduced with increasing orifice diameter and the optimum injection orifice diameter is 2.6 mm. When increasing orifice diameter over than 2.6 mm, droplet diameter is not decreased with increasing orifice diameter. This is due to the irregular distribution of the liquid sheet around the inner surface of injection orifice.

  • PDF

Spray Characteristics of the Rotating Fuel Injection System (회전연료 분사시스템의 분무특성)

  • Lee, D.H.;Park, J.B.;Choi, S.M.
    • Journal of ILASS-Korea
    • /
    • v.11 no.2
    • /
    • pp.81-88
    • /
    • 2006
  • The spray characteristics of the rotating fuel injection system were investigated. The special test rig was devised to get the spatial and momentary droplet information. This experimental apparatus consists of a high-speed motor, a shaft, a rotating fuel nozzle and an acrylic case. Spray droplet size and velocity were measured by PDPA(Phase Doppler Particle Analyzer) and instantaneous velocity field was measured by 1'IV (Particle Image Velocimetry) system. At the same time, spray visualization was performed by using ND-YAG laser-based flash photography. From these two different laser diagnostic techniques, we could get spatial and instantaneous spray information fur rotating fuel injection system. The results presented in this paper indicate that spray characteristics such as droplet size, velocity and spray pattern were strongly influenced by rotational speed.

  • PDF

Combustion Characteristics of the Slinger Combustor (슬링거 연소기의 연소특성)

  • 이강엽;이동훈;최성만;박정배;박영일;김형모;한영민
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.173-178
    • /
    • 2003
  • The study was performed to understand combustion characteristics of the slinger combustor. Liquid fuel is discharged radially outwards through injection holes drilled in the high speed rotating shaft. We observed atomizing characteristics with variation of fuel nozzle rotating speed by using PDPA system. The mean drop diameter highly depends on fuel nozzle rotating speed. In KARI combustion test facility, Ignition and combustion tests were performed by using real scale combustor. In the test results, ignition and combustion efficiency were increased according to increasing fuel nozzle rotating speed. The measured radial temperature distribution at the combustor exit shows stable and fairly good distribution.

  • PDF

Spray Characteristics of the Rotary Atomizer for the Slinger Combustor (슬링거 연소기의 회전형 분사장치의 분무특성 연구)

  • Choi, Hyun-Kyung;Lee, Dong-Hun;You, Gyung-Won;Choi, Seong-Man
    • Journal of ILASS-Korea
    • /
    • v.13 no.3
    • /
    • pp.149-155
    • /
    • 2008
  • An experimental study was performed to understand spray characteristics of the rotary atomizer for the slinger combustor. In this fuel injection system, fuel is injected and atomized in the combustor by centrifugal forces to engine shaft. The experimental apparatus consists of a high speed rotational spindle, rotary atomizer, pressure tank and acrylic case. The droplet size and velocity were measured by PDPA (phase Doppler particle analyzer), and spray was visualized by using high speed camera and Nd:Yag laser-based flash photography. From the test results, the droplet size (SMD) is largely affected by rotational speed, mass flow rate and the number of orifice. As the experimental results, we could understand the spray characteristics of the rotary atomizer for the slinger combustor and obtain the optimum shape of the rotary atomizer which is suitable for the small gas turbine engine.

  • PDF

Combustion Characteristics of the Slinger Combustor (슬링거 연소기의 연소특성)

  • 이강엽;이동훈;최성만;박정배;박영일;김형모;한영민
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.1
    • /
    • pp.38-43
    • /
    • 2004
  • The study was performed to understand combustion characteristics of the slinger combustor. Liquid fuel is discharged radially outwards through injection holes drilled in the high speed rotating shaft. The spray test was peformed to verify atomizing characteristics with variation of fuel nozzle rotational speed by using PDPA system. SMD was measured at different RPM and values are 70$\mu\textrm{m}$ at 5,000RPM rpm, 60$\mu\textrm{m}$ at 10,000RPM and 40$\mu\textrm{m}$ at 20,000RPM. In the results, we found out that SMD is grown smaller with increasing rotational speed. In KARI combustion test facility, Ignition and combustion tests were performed by using combustor test rig. In the test results, ignition and combustion efficiency were improved according to increasing rotational speed. The measured radial temperature distribution at the combustor exit shows stable and fairly good distribution.

An Experimental Study of the Gas Turbine Slinger Combustor (가스터빈 슬링거 연소기 실험연구)

  • Choe, Seong-Man;Lee, Gang-Yeop;Lee, Dong-Hun;Park, Jeong-Bae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.2
    • /
    • pp.68-74
    • /
    • 2006
  • An experimental study was carried out to investigate the combustion characteristics of the slinger combustor. A combustion test rig was manufactured and installed in KARI combustor test facility. From the ignition test results, we found that there were two major factors influencing the ignition limits; by increasing the rotational speed and the air mass flow rate, a better ignition performance was attained. From the combustion test results, we obtained 99.6% combustion efficiency, 15% pattern factor, and 3% profile factor. The results in this work indicate that the ignition and combustion characteristics of a slinger combustor are markedly different from those of a conventional annular combustor.