• Title/Summary/Keyword: 회전된 얼굴 검출

Search Result 56, Processing Time 0.026 seconds

A Simple Way to Find Face Direction (간단한 얼굴 방향성 검출방법)

  • Park Ji-Sook;Ohm Seong-Yong;Jo Hyun-Hee;Chung Min-Gyo
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.234-243
    • /
    • 2006
  • The recent rapid development of HCI and surveillance technologies has brought great interests in application systems to process faces. Much of research efforts in these systems has been primarily focused on such areas as face recognition, facial expression analysis and facial feature extraction. However, not many approaches have been reported toward face direction detection. This paper proposes a method to detect the direction of a face using a facial feature called facial triangle, which is formed by two eyebrows and the lower lip. Specifically, based on the single monocular view of the face, the proposed method introduces very simple formulas to estimate the horizontal or vertical rotation angle of the face. The horizontal rotation angle can be calculated by using a ratio between the areas of left and right facial triangles, while the vertical angle can be obtained from a ratio between the base and height of facial triangle. Experimental results showed that our method makes it possible to obtain the horizontal angle within an error tolerance of ${\pm}1.68^{\circ}$, and that it performs better as the magnitude of the vertical rotation angle increases.

  • PDF

Face Detection using Orientation(In-Plane Rotation) Invariant Facial Region Segmentation and Local Binary Patterns(LBP) (방향 회전에 불변한 얼굴 영역 분할과 LBP를 이용한 얼굴 검출)

  • Lee, Hee-Jae;Kim, Ha-Young;Lee, David;Lee, Sang-Goog
    • Journal of KIISE
    • /
    • v.44 no.7
    • /
    • pp.692-702
    • /
    • 2017
  • Face detection using the LBP based feature descriptor has issues in that it can not represent spatial information between facial shape and facial components such as eyes, nose and mouth. To address these issues, in previous research, a facial image was divided into a number of square sub-regions. However, since the sub-regions are divided into different numbers and sizes, the division criteria of the sub-region suitable for the database used in the experiment is ambiguous, the dimension of the LBP histogram increases in proportion to the number of sub-regions and as the number of sub-regions increases, the sensitivity to facial orientation rotation increases significantly. In this paper, we present a novel facial region segmentation method that can solve in-plane rotation issues associated with LBP based feature descriptors and the number of dimensions of feature descriptors. As a result, the proposed method showed detection accuracy of 99.0278% from a single facial image rotated in orientation.

Development of Rotation Invariant Real-Time Multiple Face-Detection Engine (회전변화에 무관한 실시간 다중 얼굴 검출 엔진 개발)

  • Han, Dong-Il;Choi, Jong-Ho;Yoo, Seong-Joon;Oh, Se-Chang;Cho, Jae-Il
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.4
    • /
    • pp.116-128
    • /
    • 2011
  • In this paper, we propose the structure of a high-performance face-detection engine that responds well to facial rotating changes using rotation transformation which minimize the required memory usage compared to the previous face-detection engine. The validity of the proposed structure has been verified through the implementation of FPGA. For high performance face detection, the MCT (Modified Census Transform) method, which is robust against lighting change, was used. The Adaboost learning algorithm was used for creating optimized learning data. And the rotation transformation method was added to maintain effectiveness against face rotating changes. The proposed hardware structure was composed of Color Space Converter, Noise Filter, Memory Controller Interface, Image Rotator, Image Scaler, MCT(Modified Census Transform), Candidate Detector / Confidence Mapper, Position Resizer, Data Grouper, Overlay Processor / Color Overlay Processor. The face detection engine was tested using a Virtex5 LX330 FPGA board, a QVGA grade CMOS camera, and an LCD Display. It was verified that the engine demonstrated excellent performance in diverse real life environments and in a face detection standard database. As a result, a high performance real time face detection engine that can conduct real time processing at speeds of at least 60 frames per second, which is effective against lighting changes and face rotating changes and can detect 32 faces in diverse sizes simultaneously, was developed.

Automatic Face and Eyes Detection: A Scale and Rotation Invariant Approach based on Log-Polar Mapping (Log-Polar 사상의 크기와 회전 불변 특성을 이용한 얼굴과 눈 검출)

  • Choi, Il;Chien, Sung-Il
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.36S no.8
    • /
    • pp.88-100
    • /
    • 1999
  • Detecting human face and facial landmarks automatically in an image is as essential step to a fully automatic face recognition system. In this paper, we present a new approach to detect automatically face and its eyes of input image with scale and rotation variations of faces by using an intensity based template matching with a single log-polar face template. In a template-based matching it is necessary to normalize the scale changes and rotations of an input image to a template ones. The log-polar mapping which simulates space-variant human visual system converts scale changes and rotations of input image into constant horizontal and cyclic vertical shifts in the output plane. Intelligent use of this property allows us to shift of the candidate log-polar faces mapped at various fixation points of an input image to be matched to a template over the log-polar plane. Thus, the proposed method eliminates the need of adapting multitemplate and multiresolution schemes, which inevitably give rise to intensive computation involved to cope with scale and rotation variations of faces. Through this scale and rotation involved to cope with scale and method can lead to detecting face and its eyes simultaneously. Experimental results on a database of 795 images show over 98% detection rate.

  • PDF

Automatic Face Region Detection and Tracking for Robustness in Rotation using the Estimation Function (평가 함수를 사용하여 회전에 강건한 자동 얼굴 영역 검출과 추적)

  • Kim, Ki-Sang;Kim, Gye-Young;Choi, Hyung-Il
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.1-9
    • /
    • 2008
  • In this paper, we proposed automatic face detection and tracking which is robustness in rotation. To detect a face image in complicated background and various illuminating conditions, we used face skin color detection. we used Harris corner detector for extract facial feature points. After that, we need to track these feature points. In traditional method, Lucas-Kanade feature tracker doesn't delete useless feature points by occlusion in current scene (face rotation or out of camera). So we proposed the estimation function, which delete useless feature points. The method of delete useless feature points is estimation value at each pyramidal level. When the face was occlusion, we deleted these feature points. This can be robustness to face rotation and out of camera. In experimental results, we assess that using estimation function is better than traditional feature tracker.

Face detection using haar-like feature and Tracking with Lucas-Kanade feature tracker (Haar-like feature를 이용한 얼굴 검출과 추적을 위한 Lucas-Kanade특징 추적)

  • Kim, Ki-Sang;Kim, Se-Hoon;Park, Gene-Yong;Choi, Hyung-Il
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.835-838
    • /
    • 2008
  • In this paper, we present automatic face detection and tracking which is robustness in rotation and translation. Detecting a face image, we used Haar-like feature, which is fast detect facial image. Also tracking, we applied Lucas-Kanade feature tracker and KLT algorithm, which has robustness for rotated facial image. In experiment result, we confirmed that face detection and tracking which is robustness in rotation and translation.

  • PDF

A Study on Real-time Face Detection in Video (동영상에서 실시간 얼굴검출에 관한 연구)

  • Kim, Hyeong-Gyun;Bae, Yong-Guen
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.2
    • /
    • pp.47-53
    • /
    • 2010
  • This paper proposed Residual Image detection and Color Info using the face detection technique. The proposed technique was fast processing speed and high rate of face detection on the video. In addition, this technique is to detection error rate reduced through the calibration tasks for tilted face image. The first process is to extract target image from the transmitted video images. Next, extracted image processed by window rotated algorithm for detection of tilted face image. Feature extraction for face detection was used for AdaBoost algorithm.

Face Detection for Intelligent Video Conference System (지능형 영상회의를 위한 얼굴검출)

  • Park, Jae-Hyeon;Park, Gyu-Sik;On, Seung-Yeop;Kim, Cheon-Guk
    • The KIPS Transactions:PartB
    • /
    • v.8B no.1
    • /
    • pp.20-27
    • /
    • 2001
  • 얼굴검출은 현재 많은 연구가 활발히 진행되고 있는 분야로 보안, 인식 등 다양한 응용분야를 갖는다. 본 논문은 카메라가 화자의 이동에 따라 이를 추적하여 회전하고 회의상황에 맞는 앵글을 유지하는 지능형 영상회의 시스템 개발의 기본요소인 화자검출의 선행단계로 얼굴검출에 대한 새로운 방법을 제안한다. RGB 색 공간의 입력영상을 YIQ 공간으로 변환한 후 IQ 성분은 피부영역검출에 Y 성분은 얼굴의 특성을 추출하는데 사용된다. 색 분포도를 이용하여 피부영역을 검출하고, 마스크를 누적 적용하여 잡음을 제거한 후 얼굴의 구조적인 특성과 명암의 분포를 이용하여 얼굴영역이 검출된다. 실험결과 다양한 배경의 영상에서 여러 명의 얼굴이 오류 없이 검출됨이 관찰되었다.

  • PDF

Face Detection system using stereo and color (스테레오와 컬러 정보를 이용한 얼굴검출 시스템)

  • Lee, Ho;Kim, Dong-Sung
    • Proceedings of the IEEK Conference
    • /
    • 2000.09a
    • /
    • pp.865-868
    • /
    • 2000
  • 본 논문에서 얼굴 검출의 목적은 화상회의나 현금 자동 인출기 같이 복잡한 배경에서 압축이나 인식, 인증 등의 처리를 위해서 한 사람의 얼굴을 검출하는 데에 있다. 본 논문에서는 이러한 얼굴 검출 방법으로 스테레오와 컬러 정보를 이용한 방법을 제안하고자 한다. 제안된 방법은 크게 두 단계로 나눌 수 있는데 첫 번째 단계는 스테레오 영상으로 두개 영상의 차영상을 구해 깊이 정보를 이용하여 얼굴의 영역이 될만한 후보를 추출한다. 두번째 단계로는 후보들중에 크기가 큰 영역의 중심점에 영역성장을 하여서 얼굴 영역을 추출한다. 제안한 알고리즘을 사용한 결과 얼굴의 회전 및 표정 변화 등에 관계없이 얼굴검출을 하였다.

  • PDF

Recognition method using stereo images-based 3D information for improvement of face recognition (얼굴인식의 향상을 위한 스테레오 영상기반의 3차원 정보를 이용한 인식)

  • Park Chang-Han;Paik Joon-Ki
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.43 no.3 s.309
    • /
    • pp.30-38
    • /
    • 2006
  • In this paper, we improved to drops recognition rate according to distance using distance and depth information with 3D from stereo face images. A monocular face image has problem to drops recognition rate by uncertainty information such as distance of an object, size, moving, rotation, and depth. Also, if image information was not acquired such as rotation, illumination, and pose change for recognition, it has a very many fault. So, we wish to solve such problem. Proposed method consists of an eyes detection algorithm, analysis a pose of face, md principal component analysis (PCA). We also convert the YCbCr space from the RGB for detect with fast face in a limited region. We create multi-layered relative intensity map in face candidate region and decide whether it is face from facial geometry. It can acquire the depth information of distance, eyes, and mouth in stereo face images. Proposed method detects face according to scale, moving, and rotation by using distance and depth. We train by using PCA the detected left face and estimated direction difference. Simulation results with face recognition rate of 95.83% (100cm) in the front and 98.3% with the pose change were obtained successfully. Therefore, proposed method can be used to obtain high recognition rate with an appropriate scaling and pose change according to the distance.