• Title/Summary/Keyword: 회색준위 동시다발 메트릭스

Search Result 3, Processing Time 0.017 seconds

A Study on the Detection Method of Red Tide Area in South Coast using Landsat Remote Sensing (Landsat 위성자료를 이용한 남해안 적조영역 검출기법에 관한 연구)

  • Sur, Hyung-Soo;Song, In-Ho;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.4
    • /
    • pp.129-141
    • /
    • 2006
  • The image data amount is increasing rapidly that used geography, sea information etc. with great development of a remote sensing technology using artificial satellite. Therefore, people need automatic method that use image processing description than macrography for analysis remote sensing image. In this paper, we propose that acquire texture information to use GLCM(Gray Level Co-occurrence Matrix) in red tide area of artificial satellite remote sensing image, and detects red tide area by PCA(principal component analysis) automatically from this data. Method by sea color that one feature of remote sensing image of existent red tide area detection was most. but in this paper, we changed into 2 principal component accumulation images using GLCM's texture feature information 8. Experiment result, 2 principal component accumulation image's variance percentage is 90.4%. We compared with red tide area that use only sea color and It is better result.

  • PDF

A Study on the Detection and Statistical Feature Analysis of Red Tide Area in South Coast Using Remote Sensing (원격탐사를 이용한 남해안의 적조영역 검출과 통계적 특징 분석에 관한 연구)

  • Sur, Hyung-Soo;Lee, Chil-Woo
    • The KIPS Transactions:PartB
    • /
    • v.14B no.2
    • /
    • pp.65-70
    • /
    • 2007
  • Red tide is becoming hot issue of environmental problem worldwide since the 1990. Advanced nations, are progressing study that detect red tide area on early time using satellite for sea. But, our country most seashores bends serious. Also because there are a lot of turbid method streams on coast, hard to detect small red tide area by satellite for sea that is low resolution. Also, method by sea color that use one feature of satellite image for sea of existent red tide area detection was most. In this way, have a few feature in image with sea color and it can cause false negative mistake that detect red tide area. Therefore, in this paper, acquired texture information to use GLCM(Gray Level Co occurrence Matrix)'s texture 6 information about high definition land satellite south Coast image. Removed needless component reducing dimension through principal component analysis from this information. And changed into 2 principal component accumulation images, Experiment result 2 principal component conversion accumulation image's eigenvalues were 94.6%. When component with red tide area that uses only sea color image and all principal component image. displayed more correct result. And divided as quantitative,, it compares with turbid stream and the sea that red tide does not exist using statistical feature analysis about texture.

Detection of Red Tide Distribution in the Southern Coast of the Korea Waters using Landsat Image and Euclidian Distance (Landsat 영상과 유클리디언 거리측정 방법을 이용한 한반도 남부해역 적조영역 검출)

  • Sur, Hyung-Soo;Kim, Seok-Gyu;Lee, Chil-Woo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.10 no.4
    • /
    • pp.1-13
    • /
    • 2007
  • We make image that accumulate two principal component after change picture to use GLCM(Gray Level Co-Occurrence Matrix)'s texture feature information. And then these images use preprocess to achieved corner detection and area detection. Experiment results, two principle component conversion accumulation images had most informations about six kind textures by Eigen value 94.6%. When compared with red tide area that uses sea color and red tide area of image that have all principle component, displayed the most superior result. Also, we creates Euclidian space using Euclidian distance measurement about red tide area and clear sea. We identify of red tide area by red tide area and clear sea about random sea area through Euclidian distance and spatial distribution.

  • PDF