Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.2
/
pp.200-209
/
2019
When forecasting future values, a model estimated after minimizing training errors can yield test errors higher than the training errors. This result is the over-fitting problem caused by an increase in model complexity when the model is focused only on a given dataset. Some regularization and resampling methods have been introduced to reduce test errors by alleviating this problem but have been designed for use with only a given dataset. In this paper, we propose a new optimization approach to reduce test errors by transforming a test error minimization problem into a training error minimization problem. To carry out this transformation, we needed additional data for the given dataset, termed pseudo data. To make proper use of pseudo data, we used three types of missing data imputation techniques. As an optimization tool, we chose the least squares method and combined it with an extra pseudo data instance. Furthermore, we present the numerical results supporting our proposed approach, which resulted in less test errors than the ordinary least squares method.
KSCE Journal of Civil and Environmental Engineering Research
/
v.33
no.4
/
pp.1693-1705
/
2013
To restore old aqueduct in Korea which is a irrigation bridge to supply water in paddy field area, it is needed to estimate approximate costs of restoration because the basic design for estimation of construction costs is often ruled out in current system. In this paper, estimating models of construction costs were developed on the basis of performance data for restoration of RC aqueduct bridges since 2003. The regression analysis (RA) model and case-based reasoning (CBR) model for the estimation of construction costs were developed respectively. Error rate of simple RA model was lower than that of multiple RA model. CBR model using genetic algorithm (GA) has been applied in the estimation of construction costs. In the model three factors like attribute weight, attribute deviation and rank of case similarity were optimized. Especially, error rate of estimated construction costs decreased since limit ranges of the attribute weights were applied. The results showed that error rates between RA model and CBR models were inconsiderable statistically. It is expected that the proposed estimating method of approximate costs of aqueduct restoration will be utilized to support quick decision making in phased rehabilitation project.
Symbolic regression is an analysis method that directly generates a function that can explain the relationsip between dependent and independent variables for a given data in regression analysis. Genetic Programming is the leading technology of research in this field. It has the advantage of being able to directly derive a model that can be interpreted compared to other regression analysis algorithms that seek to optimize parameters from a fixed model. In this study, we propse a symbolic regression algorithm using parallel genetic programming based on a coarse grained parallel model, and apply the proposed algorithm to PMLB data to analyze the effectiveness of the algorithm.
센서 데이터의 중요성이 커지면서 센서 데이터 처리 연구의 수요가 증가하고 있다. 센서 데이터 기반의 딥러닝 모델 개발 시, 센서 데이터 단일 값에 의한 출력이 아닌 시계열적인 특성을 반영하여 연속적인 데이터 간의 연관성을 파악할 수 있는 슬라이딩 윈도우 기법을 통해 효율적으로 데이터를 분석하고 처리할 수 있다. 하지만, 기존의 방법들은 학습 성능(학습 시간 및 모델 성능)에 미치는 영향을 평가하는 기준 없이 입력 데이터의 윈도우 사이즈를 임의로 설정하여 데이터를 처리해 왔다. 따라서, 본 논문은 학습 시간과 모델 성능을 기준으로 센서 데이터의 윈도우 사이즈 최적화 기법을 제안한다. 제안한 방법은 전류를 이용하여 스위치와 다이오드 온도를 추정하는 가상 센서(virtual sensor) 실험 테스트베드에 적용하여, 학습 시간 중심으로는 5%의 윈도우 사이즈를, 모델 성능 중심으로는 R2 SCORE 의 값을 0.9295 로 갖는 8%의 윈도우 사이즈가 최적으로 도출되었다.
단백질의 구조적 동등성을 평가를 위한 형태 기반의 기술자에 대한 연구는 제한적으로 이루어지고 있으며 대부분 지역적 특성 값으로 표현된 지역적 접근 방법이 다수를 이루고 있다. 지역적 특성과 전역적 특성을 포함하는 형태기술자의 경우 각 특성들이 동등한 중요도로 결합되어 있다. 본 연구에서는 선형 회귀분석을 적용하여 각 특성에 대한 중요도를 최적화하여 형태기술자를 재정의 하였다. 최적화된 형태기술자를 단백질의약품인 인슐린 모델에 적용하여 구조적 동등성을 평가할 수 있는 방법론을 제시하였다. 최적화된 형태기술자는 동일한 그룹에 속한 인간 인슐린 단백질 모델과 지역적으로 다른 구조를 가지는 인슐린 아날로그 그룹을 명확히 구분할 수 있음을 확인하였고 이러한 성능은 이전 연구의 형태기술자와 3D 저니크 기술자보다 더 좋은 성능을 보였다. 또한 제안한 방법은 고해상도 단백질 3차 구조 정보를 활용하여 유사성을 판별한 RMSD 방법과 유사하게 서로 다른 표면 구조를 가지는 단백질을 구별할 수 있음을 확인하였다. 이러한 결과로부터 본 연구에서 제시하는 형태기술자 및 최적화된 동등성 평가 함수는 SAXS 분석과 같이 저해상도 단백질 표면 모델을 확보할 수 있는 분석에 적용하여 단백질의 구조적 동등성을 판별할 수 있는 기반을 제공할 수 있을 것으로 판단된다.
Economic optimization of cumene manufacturing process to produce cumene from benzene and propylene was studied. The chosen objective function was the operational profit per year that subtracted capital cost, utility cost, and reactants cost from product revenue and other benefit. The number of design variables of the optimization are 6. Matlab connected to and controlled Unisim Design to calculate operational profit with the given design variables. As the first step of the optimization, design variable points was sampled and operational profit was calculated by using Unisim Design. By using the sampled data, the estimation model to calculate the operational profit was constructed, and the optimization was performed on the estimation model. This study compared second order polynomial and support vector regression as the estimation method. As the sampling method, central composite design was compared with Hammersley sequence sampling. The optimization results showed that support vector regression and Hammersley sequence sampling were superior than second order polynomial and central composite design, respectively. The optimized operational profit was 17.96 MM$ per year, which was 12% higher than 16.04 MM$ of base case.
This study suggests the prediction model to estimate the specific energy of a pick cutter using a gene expression programming (GEP) and particle swarm optimization (PSO). Estimating the performance of mechanical excavators is of crucial importance in early design stage of tunnelling projects, and the specific energy (SE) based approach serves as a standard performance prediction procedure that is applicable to all excavation machines. The purpose of this research, is to investigate the relationship between UCS and BTS, penetration depth, cut spacing, and SE. A total of 46 full-scale linear cutting test results using pick cutters and different values of depth of cut and cut spacing on various rock types was collected from the previous study for the analysis. The Mean Squared Error (MSE) associated with the conventional Multiple Linear Regression (MLR) method is more than two times larger than the MSE generated by GEP-PSO algorithm. The $R^2$ value associated with the GEP-PSO algorithm, is about 0.13 higher than the $R^2$ associated with MLR.
기계학습 모델을 이용한 분류 및 회귀 문제해결에는 다양한 전처리 알고리즘 및 기계학습 모델이 활용된다. 하지만 합리적인 성능을 위해서는 주어진 데이터에 따라 적절한 알고리즘 조합에 대한 탐색 및 최적화 과정이 펄수적이다. 본 논문에서는 최적의 알고리즘 조합을 탐색하는 방법 중 랜덤 탐색과 유전 알고리즘 탐색 방법을 구현하고 8가지 데이터에 대한 성능 비교를 통해 여러 기계학습 모델을 고려하는 탐색 방법의 필요성을 보인다.
Proceedings of the Korea Water Resources Association Conference
/
2019.05a
/
pp.328-328
/
2019
효울적인 수자원 관리를 위해 홍수, 가뭄예측을 비롯한 수문분석이 필수적이나 입력자료 구축시스템의 한계로 인해 다양한 수문 데이터를 활용한 연구가 부족한 실정이다. 입력자료의 안정적인 구축뿐 아니라 입력자료의 다양화 및 최적화를 통해서 수문분석의 정확성을 향상시킬 수 있으며 이를 위한 연구가 필요하다. 본 연구에서는 지표면과 지표아래의 토양 수분 상태를 개념화한 분포형 수문 모델을 이용하여 대표적인 기상-수문 인자인 강우, 토양수분 및 증발산 데이터를 적용함으로써 입력자료를 최적화하기 위한 방법을 연구하였다. 연구결과 강우-유출모형의 회귀분석에서 결정계수 값이 0.8 이상으로 신뢰할 만한 수준을 보였으며, 연구지역의 유출특성이에 입력자료의 최적화 정도에 영향을 미치는 것으로 나타났다. 이를 통해 강우-유출모형 입력자료의 다각화 및 최적화 연구를 통해 수문 자료 활용 가능성을 확대하고, 모형의 정확도 개선을 기대할 수 있으며, 분석 결과로부터 개념적 강우-유출 모형의 안정성을 검증할 계획이다.
Han, Hyeong Dong;Kim, Jeong Hwan;Yoon, Jung Ho;Seo, Jong Won
KSCE Journal of Civil and Environmental Engineering Research
/
v.31
no.6D
/
pp.829-837
/
2011
Construction cost estimation in planning phase which calculates the cost for performing construction tasks is used for various ways. Meanwhile, in the case of road construction, the existing cost estimating method in early phase based on numerical mean value of the past is not accurate to be used. This paper propose neural network model for estimating road construction cost in planning phase to solve the limit of current cost estimating method. The model was designed using past road construction bidding records, and variables of model were optimized through trial and error. The estimation result of the model was compared with regression analysis and government's standard and it was verified that the model is better in accuracy. It is expected that the proposed model will be used for road cost estimation in planning phase.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.