Communications for Statistical Applications and Methods
/
v.4
no.2
/
pp.327-332
/
1997
다층 신경망은 비모수 회귀함수 추정의 한 방법이다. 다충 신경망을 학습시키기 위해 역전파 알고리즘이 널리 사용되고 있다. 그러나 이 알고리즘은 이상치에 매우 민감하여 이상치를 포함하고 있는 자료에 대하여 원하지 않는 회귀함수를 추정한다. 본 논문에서는 통계물리에서 자주 사용하는 방법을 이용하여 로버스트 역전파 알고리즘을 제안하고 수학적으로 신경망과 매우 유사한 PRP(projection pursuit regression) 방법, 일반적인 역전파 알고리즘과 모의실험을 통해 비교 분석한다.
Journal of the Korean Institute of Intelligent Systems
/
v.10
no.6
/
pp.533-541
/
2000
본 논문에서는 독립변수들의 차원을 감소시켜 일반회귀 신경망의 성능을 개선하는 방법을 제안하였다. 제안된 방법에서는 적응적 학습 알고리즘의 주요성분분석 기법을 이용하여 독립변수 패턴의 특징을 추출하고 이를 일반회귀 신경망의 학습데이터로 이용하였다. 이는 주요성분분석 기법이 가지는 대용량의 입력 데이터를 통계적으로 독립인 특징들의 집합으로 변환시키는 속성을 살려 학습데이터의 차원을 감소시킴으로서 고차원의 학습데이터에 따른 일반회귀 신경망이 가지는 제약을 해결하기 위함이다. 제안된 기법의 일반회귀 신경망을 3개의 독립변수 패턴을 가진 암모니아 제조공정문제와 10개의 독립변수 패턴을 가진 자동차 연비문제에 각각 적용하여 시뮬레이션한 결과, 기존의 일반회귀 신경망에 의한 결과와 비교할 때 더욱 우수한 학습성능과 회귀성능이 있음을 확인할 수 있었다. 그리고 커널함수의 평활요소 설정 면에서도 우수한 특성이 있음을 확인할 수 있었다.
Proceedings of the Korean Society for Quality Management Conference
/
2006.04a
/
pp.506-512
/
2006
다양한 아파트 특성들을 이용하여 아파트 가격을 추정하고 예측하는 연구 또한 많이 존재하고 있는 실정이다. 그렇지만 이러한 연구들 대부분이 회귀모형에 지나치게 의존하고 있는 실정이다 그러나 회귀모형은 단점보다 장점이 많은 모형이다. 본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점들을 극복하고 회귀모형과 상호보완적인 모형을 도입할 필요성에 의해서 본 연구를 수행한 것이다. 다양한 아파트 특성들에 대하여 신경망모형을 이용하여 아파트 가격을 예측하고, 기존의 회귀모형과 비교하는 것이 본 연구의 주목적이다 또한 회귀모형과 신경망모형의 상호 보완적인 측면을 규명하는 것은 본 연구의 부차적인 목적이 된다 아파트 특성들은 주변에서 쉽게 이용 가능한 데이터를 위주로 하였다. 2004년 6월 기준으로 서울시 송파구와 도봉구의 아파트 매매가격들과 12개의 아파트 특성들을 수집하였다. 아파트 매매가격들 (즉, 매매 하한가, 일반 거래가, 매매 상한가) 을 새로운 측정방법을 이용하여 하나의 매매가격으로 추정하였으며, 대표성을 가지도록 하였다. 신경망모형을 도입하여 아파트 특성들을 이용하여 아파트 가격을 정밀하고 유효하게 예측하고, 기존의 회귀모형들과 비교하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다 하겠다. 그리고 주택에 관한 기존의 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
In this paper, we investigates a reliable model of the Predictive Recurrent Neural Network for the speech recognition. Predictive Neural Networks are modeled by syllable units. For the given input syllable, then a model which gives the minimum prediction error is taken as the recognition result. The Predictive Neural Network which has the structure of recurrent network was composed to give the dynamic feature of the speech pattern into the network. We have compared with the recognition ability of the Recurrent Network proposed by Elman and Jordan. ETRI's SAMDORI has been used for the speech DB. In order to find a reliable model of neural networks, the changes of two recognition rates were compared one another in conditions of: (1) changing prediction order and the number of hidden units: and (2) accumulating previous values with self-loop coefficient in its context. The result shows that the optimum prediction order, the number of hidden units, and self-loop coefficient have differently responded according to the structure of neural network used. However, in general, the Jordan's recurrent network shows relatively higher recognition rate than Elman's. The effects of recognition rate on the self-loop coefficient were variable according to the structures of neural network and their values.
Korean Journal of Construction Engineering and Management
/
v.7
no.2
s.30
/
pp.162-170
/
2006
Neural network analysis is expected to enhance the forecasting ability for the real estate market. This paper reviews definition, structure, strengths and weaknesses of neural network analysis, and verifies the applicability of neural network analysis for the real estate market. Neural network analysis is compared with regression analysis using the same sample data. The analyses model the macroeconomic parameters that influence the sales price of apartments. The results show that neural network analysis provides better forecasting accuracy than regression analysis does, what confirms the applicability of neural network analysis for the real estate market.
일반화된 회귀 신경망을 이용하여 반도체 공정 최적화를 위한 플라즈마를 모델링한다. 플라즈마는 Box-W린son 실험계획표에 의해 특성화되었으며, 여기에서 변화시킨 인자로는 소스전력, 압력, 척지지대의 위치, 그리고 염소의 유량이다. 총 24회의 실험이 수행이 되었으며, 플라즈마 변수는 Langmuir Probe를 이용하여 측정하였다. 측정된 주요 플라즈마 변수로는 전자밀도, 전자온도, 그리고 플라즈마 전위이다. 폭변수를 점진적으로 증가시켜 회귀신경망을 최적화하였으며. 최적화된 모델은 통계적인 반응표면모델과 비교하였다. 비교 결과, 회귀신경망은 반응표면모델에 상응하는 예측능력을 보이고 있음을 알 수 있었다.
This paper evaluates the performance of the neural network autoregressive model combined with an exponential smoothing model, called the NNARX+ETS model. The combined model utilizes the components of ETS as exogenous variables for NNARX, to forecast time series data using artificial neural networks. The main idea is to enhance the performance of NNAR using only lags of the original time series data, by combining traditional time series analysis methods with the neural networks through NNARX. We employ two real data for performance evaluation and compare the NNARX+ETS with NNAR and traditional time series analysis methods such as ETS and ARIMA (autoregressive integrated moving average) models.
Proceedings of the Korea Information Processing Society Conference
/
2011.11a
/
pp.1516-1519
/
2011
예측에 필요한 중요한 자료에는 비선형 자료와 시계열과 같은 선형 자료 등이 있다. 이들 자료는 그 함축적인 관계가 매우 복잡하여 전통적인 통계분석 도구로 식별하는데 어려움이 많다. 신경망 분석은 비모수적 문제나 비선형 곡선 적합능력의 우수성 때문에 현실세계에서의 고유한 복잡성을 다루는 많은 경제 응용 분야에서 널리 이용되고 있다. 신경망은 또한 경제 시계열자료의 예측분야에서도 여러 연구에서 훌륭한 도구로서 적용되고 있다. 전통적으로 우리나라에서 시계열자료의 예측은 선형 자료적 분석을 중심으로 하는 분석도구인 자기회귀누적이동평균(ARIMA)모형을 이용한 시계열분석이 일반적이다. 이 연구에서는 신경망과 ARIMA 모형을 이용하여 한국의 주가변동 자료 및 자동차등록 현황 자료등과 같은 시계열자료를 이용한 예측결과를 비교한다. 연구의 결과는 신경망을 이용한 예측 방법들이 ARIMA 예측 결과보다 통계적으로 작은 오차를 주는 보다 효율적인 방법임을 보여주고 있다.
Proceedings of the Korea Society for Industrial Systems Conference
/
2009.05a
/
pp.220-226
/
2009
본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 널리 이용되어 왔던 신경망모형(Neural Network Model)은 입력변수가 불완전하고 변동폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정밀하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
Proceedings of the Korean Society for Quality Management Conference
/
2010.04a
/
pp.379-385
/
2010
본 연구는 회귀모형을 부정하기보다는 새로운 모형을 도입하여, 회귀모형의 문제점을 극복하고 회귀모형과 상호보완적인 모형을 소개하고자 본 연구를 수행하였다. 현재까지 인공지능 분야에서 멀리 이용되어 왔던 신경망모형 (Neural Network Model)은 입력변수가 불완전하고 변동 폭이 넓은 경우에도 해석이 가능하며, 데이터 수가 적거나 불규칙한 경우라도 사례의 반복학습을 통해 오차를 줄여나가기 때문에, 데이터 수에 민감한 영향을 받는 회귀모형보다 정밀한 산정이 가능하다(박우열, 차정환, 강경인, 2002). 이러한 신경망모형에 아파트 특성들을 도입하여 아파트 가격을 정말하고 유효하게 예측하는 것은 아파트 가격에 대한 연구 분야에 큰 의미가 있다. 그리고 주택에 관한 기존 연구와 신규 연구에 신경망모형이 활용될 수 있으리라 판단된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.