• Title/Summary/Keyword: 회귀분석모델

Search Result 1,535, Processing Time 0.025 seconds

Development of a Model for Predicting Modulus on Asphalt Pavements Using FWD Deflection Basins (FWD 처짐곡선을 이용한 아스팔트 포장구조체의 탄성계수 추정 모형 개발)

  • Park, Seong Wan;Hwang, Jung Joon;Hwang, Kyu Young;Park, Hee Mun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5D
    • /
    • pp.797-804
    • /
    • 2006
  • A development of regression model for asphalt concrete pavements using Falling Weight Deflectometer deflections is presented in this paper. A backcalculation program based on layered elastic theory was used to generate the synthetic modulus database, which was used to generate 95% confidence intervals of modulus in each layer. Using deflection basins of FWD data used in developing this procedure were collected from Pavement Management System in flexible pavements. Assumptions of back-calculation are that one is 3 layered flexible pavement structure and another is depth to bedrock is finite. It is found that difference of between 95% confidence intervals and modulus ranges of other papers does not exist. So, the data of 95% confidence intervals in each layer was used to develop multiple regression models. Multiple regression equations of each layer were established by SPSS, package of Statics analysis. These models were proved by regression diagnostics, which include case analysis, multi-collinearity analysis, influence diagnostics and analysis of variance. And these models have higher degree of coefficient of determination than 0.75. So this models were applied to predict modulus of domestic asphalt concrete pavement at FWD field test.

Prediction model of plasma deposition process using genetic algorithm and generalized regression neural network (유전자 알고리즘과 일반화된 회귀신경망을 이용한 플라즈마 증착공정 예측모델)

  • Lee, Duk-Woo;Kim, Byung-Whan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07b
    • /
    • pp.1117-1120
    • /
    • 2004
  • 경제적인 공정분석과 최적화를 위해서는 컴퓨터를 이용한 플라즈마 예측모델이 요구되고 있다. 본 연구에서는 일반화된 회귀 신경망 (GRNN)을 이용하여 플라즈마 증착공정 모델을 개발한다. GRNN의 예측성능은 패턴층 뉴런의 가우시안 함수를 구성하는 학습인자, 즉 spread에 의존한다. 종래의 모델에서는 모든 가우시안 함수의 spread가 동일한 값에서 최적화되었으며, 이로 인해 모델의 예측성능을 향상시키는 데에는 한계가 있었다. 본 연구에서는 유전자 알고리즘 (GA)를 이용하여 다변수 spread를 최적화하는 기법을 개발하였으며, 그 성능을 PECVD 공정에 의해 증착된 SiN 박막의 증착률에 적용하여 평가하였다. $2^{6-1}$ 부분인자 실험계획법에 의해 수집된 데이터를 이용하여 신경망을 학습하였고, 모델적합성 점검을 위해 별도의 12번의 실험을 수행하였다. 가우시안 함수의 spread는 0.2에서 2.0까지 0.2간격으로 증가시켰으며, 최적화한 GA-GRNN모델의 예측성능은 6.6 ${\AA}/min$이었다. 이는 종래의 방식으로 최적화한 모델의 예측성능 (13.5 ${\AA}/min$)과 비교하여 50.7% 향상된 예측성능이며, 이러한 향상은 제안한 GA-GRNN 모델이 플라즈마 공정 모델의 예측성능을 증진하는데 매우 효과적임을 보여준다.

  • PDF

A Normalization and Modeling of Segmental Duration (음운지속시간의 정규화와 모델링)

  • 김인영
    • Proceedings of the Acoustical Society of Korea Conference
    • /
    • 1998.08a
    • /
    • pp.99-104
    • /
    • 1998
  • 한국어의 자연스러운 음성합성을 위해 280문장에 대하여 남성화자 1명이 발성한 문음성 데이터를 음운 세그먼트, 음운 라벨링, 음운별 품사 태깅하여 음성 코퍼스를 구축하였다. 이 문 음성 코퍼스를 사용하여 음운환경, 품사 뿐만 아니라 구문 구조에 이하여 음운으 lwlthrtlrks이 어떻게 변화하는가에 대하여 xhdrPwjrdfmh 분석하였다. 음운 지속시간을 보다 정교하게 예측하기 위하여, 각 음운의 고유 지속시간의 영향이 배제된 정규화 음운지속시간을 회귀트리를 이용하여 모델화하였다. 평가결과, 기존의 회귀트리를 이용한 음운지속시간 모델에 의한 예측오차는 87%정도가 20ms 이내 이었지만, 정규화 음운 지속시간 모델에 의한 예측 오차는 89% 정도가 20ms 이내로 더욱 정교하게 예측되었다.

  • PDF

A Study of Bicycle Crash Analysis at Urban Signalized Intersections (도시부 신호교차로에서의 자전거사고 분석)

  • Oh, Ju-Taek;Kim, Eung-Cheol;Ji, Min-Kyung
    • International Journal of Highway Engineering
    • /
    • v.9 no.2 s.32
    • /
    • pp.1-11
    • /
    • 2007
  • The rapid growths of economy and automobiles since the 1970's have caused serious traffic jams and environmental disruption in urban areas. To relieve these problems caused by urbanization, there should be considered alternative means of transportation modes. Many developed countries have accepted bicycles as a so called "Green Mode" for environmentally oriented strategies to increase the qualities of urban lives. Korea have also attempted various means to raise bicycle usages. In this research, significant factors affecting bicycle crashes at signalized intersections in urban areas were studied. The model results showed that Poisson regression is the best fit methodology for data modeling and revealed that traffic volume, a number of driveways, configuration of the ground, presence of bicycle path, school, and bus stop, residential area, size of intersection are significant factors affecting the bicycle crashes.

  • PDF

A Study on Crash Causations for Railroad-Highway Crossings (철도건널목 사고요인 분석에 관한 연구)

  • O, Ju-Taek;Sin, Seong-Hun;Seong, Nak-Mun;Park, Dong-Ju;Choe, Eun-Su
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.1
    • /
    • pp.33-44
    • /
    • 2005
  • Railroad crossing crashes are fewer than road crashes, but with regard to crash severity, they can be serious injury crashes. There should be, therefore, enormous efforts to increase the safety of railroad crossings. The objective of this paper is to identify and understand factors associated with railroad crossing crashes. Statistical models are used to examine the relationships between crossing accidents and geometric elements of crossings. The results show the Poisson model is the most appropriate method for the crossing accidents, because overdispersion was not observed. This study identifies seven significant factors associated with railroad crossing crashes through the main and variant models. With regard to explanatory factors on crossing safety, the total traffic volume, daily train volume, presence of commercial area around crossings, distance of train detector from crossings, time duration between the activation of warning signals and gates, crossing types, and speed hump were found to affect the safety of railroad crossings.

Comparative Study of Modeling of Hand Motion by Neural Network and Kernel Regression (손 동작을 모사하기 위한 신경회로망과 커널 회귀의 모델링 비교 연구)

  • Yang, Hac-Jin;Kim, Hyung-Tae;Kim, Seong-Kun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.399-405
    • /
    • 2010
  • The grasping motion of a person's hand for a simplified degree of freedom was modeled by using the photographic motion measured by a high-speed camera. The mathematical expression of distal interphalangeal (DIP) motion was developed by using relation models of the metacarpophalangeal (MCP) and proximal interphalangeal (PIP) motions to reduce the degree of freedom. The mathematical expression for humanoid-hand operation obtained using a learning algorithm with a neural network and using a kernel regression model were compared. A feasible model of hand operation was obtained on the basis of comparative data analysis by using the kernel regression model.

Software Development Effort Estimation Using Neural Network Model (신경망 기반의 소프트웨어 개발노력 추정모델 구축에 관한 연구)

  • Kim, Byung-Gwan;Baek, Seung
    • 한국IT서비스학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.372-380
    • /
    • 2005
  • 소프트웨어 개발노력 추정에 대한 연구는 소프트웨어가 복잡해지고 범위가 크게 증가함에 따라서 그 중은 지속적으로 부각되고 있다. 관련 프로젝트를 발주하는 업체나, 이를 수주하고 개발을 진행하는 업체에게 원가를 고려하는 측면에서 매우 중요한 부분을 차지하고 있다. 이러한 개발노력 추정을 위하여 다양한 접근 방식들이 고려되어지고 있는데, 그중에서 많이 활용되어지고 있는 방식은 소프트웨어 규모에 기반을 둔 LOC(Line Of Code) 기반 COCOMO (Constructive Cost Model) 모델이나 기능점수(Function Point)를 기반으로 한 회귀분석 모델, 인공지능(Artificial Intelligence)을 활용한 신경망(Neural Network) 모델, 사례분석기법 (CBR, Case Based Reasoning) 등이 있다. 이중에서 최근에 기능점수를 활용한 개발노력 추정에 관한 연구들이 활발히 진행되고 있으나 개발노력 추정에는 소프트웨어 규모의 척도인 기능점수 뿐만 아니라, 개발환경을 구성하는 여러 가지 측면에 대한 고려가 추가되어져야 한다. 이에 본 논문은 최신의 소프트웨어 개발 사례들에 대하여 기능점수 및 추가적인 개발환경 요소들을 면밀히 분석하고, 분석한 내용에 대해서 전문가들의 설문을 통한 빈도분석 및 로지스틱 회귀분석, 데이터마이닝 기법인 신경망 분석 등을 활용하여 개발노력 추정 모델을 구축함으로써, 소프트웨어 개발의 다양한 측면의 중요성을 강조하고, 정확한 추정의 방안을 제시 하고자 노력 하였다.

  • PDF

The study On Linear Regression Model At One Component Input System) (성분입력계의 선형회귀모델에 관한 연구)

  • 김치홍;주영수
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 1990.07a
    • /
    • pp.167-174
    • /
    • 1990
  • 일종의 Autoregression Model에 강우와 유량의 입력에 의하여 일유입량의 예측을 행한 것으로 댐 지점의 일유입량과 우량시계열을 회귀분석하여 댐 유역의 하천유량을 예측 할 수 있는 수학적 모형을 수립하고 통계적 분석을 행 하고자 한다.

  • PDF

Comparison of Prediction Accuracy Between Regression Analysis and Deep Learning, and Empirical Analysis of The Importance of Techniques for Optimizing Deep Learning Models (회귀분석과 딥러닝의 예측 정확성에 대한 비교 그리고 딥러닝 모델 최적화를 위한 기법들의 중요성에 대한 실증적 분석)

  • Min-Ho Cho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.2
    • /
    • pp.299-304
    • /
    • 2023
  • Among artificial intelligence techniques, deep learning is a model that has been used in many places and has proven its effectiveness. However, deep learning models are not used effectively in everywhere. In this paper, we will show the limitations of deep learning models through comparison of regression analysis and deep learning models, and present a guide for effective use of deep learning models. In addition, among various techniques used for optimization of deep learning models, data normalization and data shuffling techniques, which are widely used, are compared and evaluated based on actual data to provide guidelines for increasing the accuracy and value of deep learning models.

Development of the Linear Regression Analysis Model to Estimate the Shear Strength of Soils (흙의 전단강도 산정을 위한 선형회귀분석모델 개발)

  • Lee, Moon-Se;Ryu, Je-Cheon;Kim, Kyeong-Su
    • The Journal of Engineering Geology
    • /
    • v.19 no.2
    • /
    • pp.177-189
    • /
    • 2009
  • The shear strength has been managed as an important factor in soil mechanics. The shear strength estimation model was developed to evaluate the shear strength using only a few soil properties by the linear regression analysis model which is one of the statistical methods. The shear strength is divided into two part; one is the internal friction angle (${\phi}$) and the other is the cohesion (c). Therefore, some valid soil factors among the results of soil tests are selected through the correlation analysis using SPSS and then the model are formulated by the linear regression analysis based on the relationship between factors. Also, the developed model is compared with the result of direct shear test to prove the rationality of model. As the results of analysis about relationship between soil properties and shear strength, the internal friction angle is highly influenced by the void ratio and the dry unit weight and the cohesion is mainly influenced by the void ratio, the dry unit weight and the plastic index. Meanwhile, the shear strength estimated by the developed model is similar with that of the direct shear test. Therefore, the developed model may be used to estimate the shear strength of soils in the same condition of study area.