한국음향학회 1997년도 영남지회 학술발표회 논문집 Acoustic Society of Korean Youngnam Chapter Symposium Proceedings
/
pp.35-39
/
1997
본 연구에서는 음소를 인식의 기본단위로 하는 한국어 단어인식 시스템의 인식정도를 개선하기 이해 각 음소의 시간방향의 정보를 포함하고 있는 동적특징인 회귀계수와 K-L(Karhunen-Loeve)변환으로 얻은 특징파라미터(이하 K-L계수라 함)를 이용하여 음소인식과 단어인식 실험을 수행한 결과 그 유효성을 확인하였다. 이를 위해 먼저 파열음을 대상으로 정적 특징과 파라미터인 멜-켑스트럼(Mel-Cepstrum)과 동적 특징 파라미터인 회귀계수(Regressive Coefficient) 와 K-L 계수(Karhunen-Loeve Coefficient)를 추출하여 음소 인식실험을 수행하였다. 그 결과 멜-켑스트럼을 사용한 경우 39.84%, 회귀계수를 사용한 경우 48.52%, K-L계수를 사용한 경우 52.40%의 인식률을 얻었다. 이를 참고로 각각의 특징 파라미터를 결합하여 인식실험한 결과 멜-켑스트럼과 K-L계수를 사용한 경우 47.17%,멜 -켑스트럼과 회귀계수의 경우 60.11%,K-L계수와 회귀계수의 경우 60.35%, 멜-켑스트럼과 K-L계수 , 회귀계수를 사용한 경우 58.13%를 인식률을 얻어 동적특징인 K-L 계수와 회귀계수를 사용한 경우와 멜-켑스트럼과 회귀계수를 사용한 경우가 높은 인식률을 보였으며 이를 단어로 확장하여 인식실험을 수행한 결과 기존의 특징 파라미터를 이용한 경우보다 높은 인식률을 얻어 동적 파라미터의 유효성을 확인하였다
단순회귀와 다중회귀에서 회귀계수의 의미는 차이가 있고 회귀계수의 추정값은 같지 않을 뿐 아니라 그 부호가 서로 다른 경우도 발생한다. 회귀모형에서 설명변수의 상대적 기여도의 파악은 회귀분석의 수행의 중요한 부분이다. 표준화 회귀모형에서 표준화 회귀계수는 해당 설명변수를 제외한 나머지 설명변수의 값이 고정되어있는 상황에서 설명변수가 표준편차만큼 증가하였을 때 반응변수가 표준편차를 기준으로 얼마나 변화했는가로 해석할 수 있지만 표준화 회귀계수의 크기가 각 설명변수의 상대적 중요도를 나타내는 척도라고 할 수 없음은 잘 알려져 있다. 본 논문에서는 다중회귀에서 회귀계수의 추정량을 상관계수와 결정계수의 함수로 나타내고 이를 추가적인 설명력과 추가적인 결정계수의 관점에서 생각해 본다. 또한 다양한 산점도에서의 상관계수와 회귀계수 추정값의 관계를 알아보고 설명변수가 두 개인 경우에 구체적으로 적용해 본다.
Communications for Statistical Applications and Methods
/
제2권1호
/
pp.13-21
/
1995
선형모형에서 오차가 대칭인 분포를 따르는지 또는 한쪽으로 치우친(skewed distribution)분포를 따르는지 검정하는 문제를 다루었다. 또 이러한 검정과정을 분석의 예비단계로 하는 회귀계수의 추정방법에 대해서 연구하고, 모의실험을 통해서 회귀계수 추정법들의 효율을 비교하였다.
본 논문에서는 음성인식 시스템의 인식 정도의 향상을 위해서 동적 특징으로서 K-L(Karhanen-Loeve)계수를 이용하여 음소모델을 구성하는 방법을 제안하고, 음소, 단어, 숫자음 인식 실험을 통하여 그 유효성을 검토하였다. 인식 실험을 위한 음성자료는 한국 전자통신 연구소에서 채록한 445단어와 국어정보공학연구소에서 채록한 4연속 숫자음을 사용하였으며, K-L계수 동적 특징의 유효성을 확인하기 위해 정적 특징으로서 멜-켑스트럼과 동적 특징으로서 K-L계수 및 회귀계수를 추출한 후 음소, 단어, 숫자음 인식 실험을 수행하였다. 인식의 기본 단위로는 48개의 유사음소단위(Phoneme Likely Unite ; PLUs)를 음소모델로 사용하였으며, 단어와 숫자음 인식을 위해서는 유한상태 오토마타(Finite State Automata; FSA)에 의한 구문제어를 통한 OPDP(One Pass Dynamic Programming)법을 이용하였다. 인식 실험 결과, 음소인식에 있어서는 정적특징인 멜-켑스트럼을 사용한 경우 39.8%, K-L 동적 계수를 사용한 경우가 52.4%로 12.6%의 향상된 인식률을 얻었다. 또한, 멜-켑스트럼과 회수계수를 사용한 경우 60.1%, K-L계수와 회귀계수를 결합한 경우에 있어서도 60.4%로 높은 인식률은 얻었다. 이 결과를 단어인식에 확장하여 인식 실험을 수행한 결과, 기존의 멜-켑스트럼 계수를 사용한 경우 65.5%, K-L계수를 사용한 경우 75.8%로 10.3% 향상된 인식률을 얻었으며, 멜-켑스트럼과 회귀계수를 결합한 경우 91.2%, K-L계수와 회귀계수를 결합한 경우 91.4%의 높은 인식률을 보였다. 도한, 4연속 숫자음에 적용한 경우에 있어서도 멜-켑스트럼을 사용한 경우 67.5%, K-L계수를 사용한 경우 75.3%로 7.8%의 향상된 인식률을 보였으며 K-L계수와 회귀계수를 결합한 경우에서도 비교적 높은 인식률을 보여 숫자음에 대해서도 K-L계수의 유효성을 확인할 수 있었다.
분산계수는 하천에서 오염물질의 혼합능을 파악할 수 있는 대표적인 인자이다. 특히 하수처리장 방류수 혼합예측과 같이 횡 방향 혼합에 대한 예측이 중요한 경우, 하천의 지형적, 수리학적 특성을 고려한 2차원 횡 분산계수의 결정이 필요하다. 2차원 횡 분산계수의 결정을 위해 기존 연구에서는 추적자실험결과로부터 경험식을 만들어 횡 분산계수 산정에 사용해왔다. 회귀분석을 통한 경험식 산정을 위해서는 충분한 데이터가 필요하지만, 2차원 추적자 실험 건수가 충분치 않아 신뢰성 높은 경험식 산정이 어려운 상황이다. 따라서 본 연구에서는 SMOTE기법을 이용하여 횡분산계수 실험데이터를 증폭시켜 이로부터 횡 분산계수 경험식을 산정하고자 한다. 또한 다중선형회귀분석을 통해 도출된 경험식의 한계를 보완하기 위해 다양한 머신러닝 기법을 적용하고, 횡 분산계수 산정에 적합한 머신러닝 기법을 제안하고자 한다. 기존 추적자실험 데이터로부터 하폭 대 수심비, 유속 대 마찰유속비, 횡 분산계수 데이터 셋을 수집하였으며, SMOTE 알고리즘의 적용을 통해 회귀분석과 머신러닝 기법 적용에 필요한 데이터그룹을 생성했다. 새롭게 생성된 데이터 셋을 포함하여 다중선형회귀분석을 통해 횡 분산계수 경험식을 결정하였으며, 새로 제안한 경험식과 기존 경험식에 대한 정확도를 비교했다. 또한 다중선형회귀분석을 통해 결정된 경험식은 횡 분산계수 예측범위에 한계를 보였기 때문에 머신러닝기법을 적용하여 다중선형회귀분석에 대한 예측성능을 평가했다. 이를 위해 머신러닝 기법으로서 서포트 벡터 머신 회귀(SVR), K근접이웃 회귀(KNN-R), 랜덤 포레스트 회귀(RFR)를 활용했다. 세 가지 머신러닝 기법을 통해 도출된 횡 분산계수와 경험식으로부터 결정된 횡 분산계수를 비교하여 예측 성능을 비교했다. 이를 통해 제한된 실험데이터 셋으로부터 2차원 횡 분산계수 산정을 위한 데이터 전처리 기법 및 횡 분산계수 산정에 적합한 머신러닝 절차와 최적 학습기법을 도출했다.
Journal of the Korean Data and Information Science Society
/
제23권4호
/
pp.643-648
/
2012
여러 임상자료를 이용하여 반응변수와 설명변수간의 관계를 규명하는 분석이 많이 이루어지고 있다. 이를 위해서 회귀분석이 흔히 사용되고 있으며, 이를 통해 설명변수가 반응변수를 얼마나 설명하는지 또한 모형이 얼마나 자료에 적합한지에 대해 분석하고 있다. 그러나 임상자료로 분석된 회귀모형에 대한 타당성 확인은 대부분 분석된 회귀모형이 얼마나 자료를 설명하는가를 나타내는 결정계수만을 살펴보는 것에 그치고 있다. 결정계수 이외의 다른 방법으로도 분석된 회귀모형의 회귀계수에 대한 타당성을 확인할 필요가 있다. 따라서 본 논문에서는 잭나이프 회귀분석과 붓스트랩 회귀분석을 이용하여 임상자료로 분석한 회귀모형의 회귀계수에 대한 타당성을 확인하는 방법을 소개하고자 한다.
종속변수와 설명변수 사이의 관계가 선형이 아닌 경우에는 비선형 관계를 반영할 수 있는 다항회귀분석을 이용하여 회귀분석을 수행한다. 한편, 다항회귀분석에는 설명변수의 거듭제곱항들이 설명변수에 추가되므로 설명변수들 사이에 상관관계가 발생하여 다항회귀모형의 성능 저하 문제가 발생할 수 있다. 본 논문에서는 PGF 수치역변환 문제를 사례로 하여 주성분회귀분석을 통해 다항회귀분석의 성능을 극적으로 향상시킬 수 있음을 보인다. 본 논문에서는 PGF의 정의를 이용하여 PGF를 다항회귀분석으로 모형화한다. 다항회귀분석을 이용하여 PGF 전개식의 회귀계수를 추정하면 회귀계수의 추정 자체가 불가능하거나 계수 추정의 정확성이 저하되는 문제가 발생한다. 이 경우 다항회귀분석에 주성분회귀분석을 적용하면 계수 추정의 정확도가 극적으로 향상되어 다항회귀분석의 계수 추정 시 발생하는 문제를 해결할 수 있음을 밝힌다.
우리나라에서 강우의 시간분포를 위해 보편적으로 사용되고 있는 방법은 Huff 4분위법으로 강우의 시간적 분포특성을 나타내는 무차원 시간분포곡선을 제시한 것으로, 강우의 지속기간을 4분위로 구분하여 각 분위의 강우량 중 가장 큰 값이 속해 있는 구간을 선택하여 그 구간의 위치에 따라 분위를 정하는 방법이다. 현재 실무에서는 Huff의 분위별 곡선에 대한 회귀식은 지속기간 전반에 걸쳐 정확도가 높은 이유로 6차식을 적용하고 있으나, 통계 모델링에서 간결함의 원리에 따라 회귀식이 간결할 필요가 있으며, 통계적 유의수준에 기초하여 회귀계수를 결정하여야 하므로 유의성 검정 방법을 통한 검정결과를 비교할 필요가 있다. 따라서 본 연구에서는 다중회귀분석 방법에 따른 회귀계수 유의성 검정결과 비교를 위하여 구미지역의 무차원 누가우량 백분율을 이용한 시간분포 회귀식을 이용하여 유의성 검정 방법인 분산분석 방법(Analysis of Variance)과 변수선택 방법(Backward Selection)의 검정 결과를 도출 및 비교하였다. 통계프로그램인 프로그래밍 R을 이용하여 변수선택 방법 중 후방제거법 함수를 이용하여 최종 회귀식을 도출하고 또한 7차 회귀식을 분산분석을 이용한 후방제거법으로 회귀계수를 제거하는 방법으로 최종 회귀식을 산정하였다. 분산분석을 이용한 후방제거법의 유의성 검정결과는 프로그래밍 R을 이용한 후방제거법의 결과와 동일한 것으로 분석되었다. 일반적으로 설계강우량의 시간분포를 위한 방법으로 사용되고 있는 Huff의 4분위 방법의 시간분포 회귀식은 회귀계수의 유의성 검정이 이루어지고 있지 않으므로 본 연구결과를 통해 설계강우량 시간분포 회귀식의 유의성 검정방법 제시 및 결과도출과정을 통해 시간분포 회귀식 산정기법으로 활용할 수 있을 것으로 사료된다.
본 논문에서는 패널회귀모형에서 내부변환(within transformation) 추정량을 이용하여 회귀계수에 대한 정확한 신뢰구간을 제시하였다. 아울러 이러한 신뢰구간의 효율성을 신뢰계수(confidence coefficient)와 신뢰구간의 평균길이(average length of confidence interval)을 사용하여 모의실험을 통하여 다른 근사적 신뢰구간들과 비교하였다. 실험결과, 내부변환추정량을 이용한 신뢰구간은 다른 근사적 신뢰구간들에 비해 명목신뢰계수를 정확히 유지하였고, 신뢰구간의 평균길이도 다른 방법들에 비해 짧은 결과를 보았다.
국내에서는 유량자료의 부족으로 수공구조물을 설계하기 위한 기초자료로서 설계강우량을 활용하고 있다. 따라서 설계강우량의 산정 및 시간분포가 중요한 요인으로 작용하고 있으며, 국내에서는 설계강우량 시간분포를 위한 방법으로 Huff의 4분위 방법을 사용하는 것이 일반적이다. 실무에서는 확률강우량도 개선 및 보완연구(Ministry of Land, Transport and Maritime Affairs, 2011)에서 제시한 관측소별 Huff의 무차원 누가우량 백분율을 이용하여 Huff의 4분위 방법 중 3분위의 자료를 이용하여 시간분포 회귀식을 산정하고 있으며, 회귀식의 차수는 전반적으로 결정계수가 높은 6차식을 사용하고 있다. 회귀식의 경우 고차식으로 갈수록 결정계수가 높아지는 것은 당연하지만 4차 이상의 회귀식에서는 결정계수의 차이가 미미하므로 6차식을 사용하는 것이 합리적이라고 할 수 없다. 따라서 본 연구에서는 통계적 유의수준에 기초하여 Huff 4분위 방법의 시간분포 회귀식에 대한 유의성 검정을 실시하여 회귀계수에 대한 통계적 검증을 실시하고 변수선택 방법인 전방선택법(Forward Selection)을 이용하여 유의하지 않은 회귀계수들을 제외하면서 가장 좋은 변수들로 구성된 간결한 설계강우량 시간분포 회귀식을 산정하고자 한다. 또한 산정된 회귀식과 기존 확률강우량도 개선 및 보완연구(Ministry of Land, Transport and Maritime Affairs, 2011)에서 제시한 회귀식과 비교하여 변수선택 방법인 전방 선택법(Forward Selection)을 이용하여 산정된 회귀식의 적합성을 검증하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.