• Title/Summary/Keyword: 황화메틸

Search Result 53, Processing Time 0.016 seconds

Investigation on the Management of Livestock Wastes and VOCs Concentration of Farms in Daejeon Area (대전광역시 양축농가의 축분뇨 관리 실태 및 VOCs 농도 조사)

  • Lee, Bong-Duk;Lee, Soo-Kee;Oh, Hong-Rok;Heo, Jung-Min;Jung, Kie-Chul;Kim, Sung-Bok
    • Korean Journal of Agricultural Science
    • /
    • v.32 no.1
    • /
    • pp.43-51
    • /
    • 2005
  • This study was carried out to investigate the style of livestock house, concentration of malodorous substances of livestock feces and livestock houses in Daejeon area. Among the livestock houses investigated, as most of cow pens(94.5%) have sawdust or chaff on the bottom, there was no leakage of feces out of pen. Most pig pens adopted slury style, but some of them currently use buffering material on the bottom. It is thought that there will be no possible contamination leakage. When it comes to hen house, all the broiler house use litters on the bottom and all the layer house use scrapper. It is also thought that there will be no possible contamination leakage. 3 out of 12 deer pens used buffering material on the bottom, 10 places were maintained in a traditional method, and 7 places left possibility of contamination leakage considering whether the roof was installed or not. The contents of ammonia, amine and volatile fatty acid in fresh feces were lower compared to rotten feces, but the concentration of sulfur-containing matter - hydrogen sulfide, methylmercapthan and ethylmercapthan were higher compared to rotten feces. In the case of malodorous ingredient in livestock houses, only small amount of ammonia and hydrogen sulfide were detected in pig pen and hen house, and other ingredients were not detectable. And those who are engaged in animal husbandry reacted negatively to the use of feed additives for decreasing malodor. In conclusion, it is not worrisome that contamination can be leaked out of animal raising facilities. But if we take into consideration that the point of investigation time is wintry season, there should be more considerate attitude. And feed additives for decreasing malodor need establishing criteria in the manufacturing process.

  • PDF

Characteristics of Ammonia in Alkaline Stabilization Facility of Sludge from Sewage Treatment Plant (하수처리오니 알칼리 안정화 처리시설에서의 암모니아 발생특성)

  • Kim, Yong-Jun;Chung, David;Jeong, Mi-Jeong;Yoo, Hye-Young;Yoon, Cheol-Woo;Shin, Sun-Kyoung
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.3
    • /
    • pp.23-33
    • /
    • 2016
  • The characteristics of ammonia generated from alkaline stabilization facilities was investigated which are for organic sewage sludge from wastewater treatment plants. The highest concentration of ammonia was found in mixing and curing process in alkaline stabilization facility and ammonia mainly showed a range of 87.78 ppm($66.62mg/m^3$) to 1,933 ppm($1,467.01mg/m^3$) by detection tube. This is presumed to occur because nitrogen oxides are converted into ammonia as the sewage sludge is mixed with lime. In some facilities, hydrogen sulfide and methyl mercaptan were detected in relatively high concentrations, but odor materials except ammonia were not detected in most of the facilities. The concentration of ammonia caused by process was generally high in the order of "mixing > curing > output > storage > drying > input." It was found that odor compounds are removed by wet absorption using sulfuric acid and sodium hypochlorite in the 5 alkaline stabilization facilities currently in operation. Each facility was designed to meet the concentration of after-treatment emission in 1 ppm($0.76mg/m^3$), 50 ppm($37.95mg/m^3$) or 100 ppm($75.89mg/m^3$), but no facility satisfied the design standard for their emssion limit. In case of ammonia, some workplaces in alkaline stabilization facilities exceeded the exposure limits established by the Ministry of Labor. It appears that proper ventilation should be provided for the safety of workers in future. No odor compound including ammonia was found by detection tubes in the border of the facilities, but trace amounts of odor compounds are expected to exist, given the current operational status of facilities.

Effects of Probiotic Complex on Performance, Blood Biochemical and Immune Parameters, Digestive Enzyme Activity, Fecal Microbial Population and Noxious Gas Emission in Broiler Chicks (복합생균제가 육계의 생산성, 혈액생화학성분과 면역지표, 소화효소 활성도, 분중 미생물 및 유해가스 발생에 미치는 영향)

  • Kim, Min-Jeong;Jeon, Dong-Gyung;Ahn, Ho-Sung;Yoon, Il-Gyu;Moon, Eun-Seo;Lee, Chai-Hyun;Lim, Yong;Jang, In-Surk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.3
    • /
    • pp.169-180
    • /
    • 2020
  • This study examined the effects of a probiotic complex (PC) containing Lactobacillus plantarum, Bacillus subtilis, and Saccharomyces cerevisiae on growth performance, organ weight, immune parameters, fecal microbial count, and noxious odor in broiler chicks. A total of 216 birds (4-day-old) were fed a basal diet (CON) and a diet supplemented with 0.25% (PC1) and 0.5% (PC2) of PC until 35 days of age. No difference in body weight, feed intake, and FCR was observed among the groups. The intestinal mucosal weight of the PC1 group was greater than that of the CON group without affecting weights of the other organs. Intestinal secretory immunoglobulin A (sIgA) levels in the PC2 group increased significantly (P<0.05) compared with that in the CON group. The PC2 group also had a strong tendency for elevated blood sIgA levels. Dietary PC did not affect the level of interleukin-1β in the blood and mucosal tissues or alter maltase, sucrase, and leucine aminopeptidase activities in the intestinal mucosa. The PC2 group had higher colony-forming units (cfu) for L. plantarum and S. cerevisiae, but lower cfu for E. coli than those in the CON group. Compared to the CON diet, the PC2 diet resulted in a decreased H2S concentration and a tendency toward decreased CH3SH concentration. In conclusion, a 0.5% PC diet showed increased sIgA and desirable microbial population, and decreased noxious odor in the feces, suggesting that PC could be applied as an environmentally friendly feed additive in broiler chicks.