• Title/Summary/Keyword: 황탈질

Search Result 54, Processing Time 0.031 seconds

Biological Nitrogen Removal Using a Single Biofilter Packed with Granular Sulfur (황 충진상 단일 생물막여과 공정을 이용한 생물학적 질소제거)

  • Moon, Jin-young;Hwang, Yong-woo;Kim, Dae-young;Ga, Mi-sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.6
    • /
    • pp.720-727
    • /
    • 2005
  • This study was performed to advance nitrogen removal efficiency by employing an single biofilter packed with granular sulfur, which consists of nitrification occurring at upper part and denitrification at lower part of the reactor. Continuos nitrification/denitrification was carried out with different alkalinity sources, which were $NaHCO_3$ and $CaCO_3$(limestone). In the downflow nitrification/denitrification biofilter packed with granular sulfur, first, terms for nitrogen removal was decided. As results, nitrification and denitrification rate with NaHCO3 at 0.85 kg $NH_4^+-N/m^3{\cdot}d$ were accomplished $0.80kg\;N/m_3{\cdot}d$, $0.43kg\;N/m^3{\cdot}d$, respectively. In the sulfur/limestone packed downflow nitrification/denitrification biofilter, sulfur and limestone were mixed packed, preliminary test showed sulfur/limestone mixing ratio was 3:1 and that was ideal. In the result, nitrification and denitrification rate at $0.7kg\;NH_4^+-N/m^3{\cdot}d$ were accomplished$0.65kg\;N/m^3{\cdot}d$, $0.34kg\;N/m^3{\cdot}d$, respectively. In general, employing granular sulfur can be implemented for only denitrification, but this system can accomplish nitrification as well as denitrification in a single reactor even though low carbon concentration was present in influent limiting to nutrient removal process. This biofilter system of limestone and granular sulfur packed together can successfully apply for nutrient removal effectively.

Nitrogen Removal Performance at Various DO Concentrations in the Bioreactor Packed with Submerged Cilia Media and Granular Sulfur (DO농도 조절에 따른 황 충전 섬모상 반응조의 질소제거 성능 변화)

  • Moon, Jin-Young;Hwang, Yong-Woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.4
    • /
    • pp.519-526
    • /
    • 2006
  • In this study, the major operating factors in SND(simultaneous nitrification and denitrification) using bioreactor packed with submerged cilia media and granular sulfur such as variation of nitrification rate, organic matter removal efficiency and denitrification efficiency in different DO concentration were mainly evaluated. Synthetic wastewater and actual sewage were used as influent wastewater. Experiment with synthetic wastewater as influent wastewater was divided into three phases with the adjustment of DO concentration. As the results, nitrification efficiency and T-N removal efficiency in the Phase 3(DO 1.0~2.0 mg/L) were 99% and 52.3%, which is significantly greater than those in other two phases. Also, loading rate and denitrification efficiency of SCPGS(Submerged Cilia media Packed with Granular Sulfur) were calculated as $0.44kg\;NO_3^--N/m^3-day$ and 50%, respectively. On the other hand, nitrification rate was decreased from 99% to 64% according to the DO concentration with the variation from 3.0~3.5 mg/L(phase1) to 0.4~0.6mg/L(phase2). Although the nitrification rate was decreased in 64% according to the variation of the DO concentration, T-N removal rate was rapidly increased to 49% by increasing of the denitrification efficiency. Experiment with actual sewage as influent wastewater was carried out to evaluate efficiency of SCPGS in real operation condition of full-scale sewage water treatment plant. At the time, T-N removal rate in this experiment and full-scale wastewater treatment plants were given by 43% and 20%, respectively. The above results indicate that SCPGS can be used as an advanced treatment process for economical efficiency considered.

Development of High-rate Nitrogen Removal Process Using Submerged MBR Packed with Granular Sulfur of Pilot Scale Plant (Pilot Scale Plant의 황 충진 MBR을 이용한 고효율의 질소제거 공법 개발)

  • Mun, Jin-Yeong;Hwang, Yong-U;Jo, Hyeon-Jeong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.3
    • /
    • pp.383-390
    • /
    • 2011
  • In this study, a process combined biofiltration with sulfur-utilizing autotrophic denitrification and membrane separation was proposed to examine the efficiency of nitrogen removal. As an experimental device, hollow-fiber module was installed in the center of reactor to generate the flux forward sulfur layer in the cylinder packed with granular sulfur. In addition, a simple module was installed in activated sludge aeration tank which inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. The experiment for developing new MBR process was carried out for three years totally. As the results of first two-year experiment, successful nitrogen removal performance was revealed with lab-scale test and pliot scale plant using artificial wastewater and actual plating wastewater. In this year, pilot scale test using actual domestic wastewater was performed to prove field applicability. As the results, high-rate nitrogen removal performance was confirmed with about 0.19 kg ${NO_3}^--N/m^3$ day of rate. Also significant fouling and pressure increase were not found during the experiment. And, the production ratio of sulfate and the consumption ratio of alkalinity showed a slightly higher value about 311 mg ${SO_4}^{2-}/L$ and 369 mg $CaCO_3$/L, respectively. In conclusion, the developed MBR process can be utilized as an alternative for retrofiting existing wastewater plants as well as new construction of advanced sewage wastewater treatment plants, with cost-effective merit.

High-Rate Biological Nitrogen Removal from Plating Wastewater using Submerged MBR Packed with Granular Sulfur (황 충진 MBR을 이용한 도금폐수의 고효율 생물학적 질소 제거)

  • Kim, Dae-young;Moon, Jin-young;Baek, Jin-uk;Hwang, Yong-woo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.19 no.2
    • /
    • pp.200-208
    • /
    • 2005
  • In this study, a new submerged membrane bioreactor process packed with granular sulfur (MBR-GS) was operated to identify the biological nitrogen removal behaviors with plating wastewater containing high-strength $NO_3{^-}$ concentration. The continuous denitrification was carried out at $20^{\circ}C$ with various nitrogen loading rates using synthetic wastewater, which composed of $NO_3{^-}$ and $HCO_3{^-}$, but also actual plating wastewater, which was collected from the effluent of the H metal plating company. As a result, high-rate denitrification in the range of $0.8kg\;NO_3{^-}-N/m^3\;day$ was accomplished at nitrogen loading rate of $0.9kg\;NO_3{^-}-N/m^3\;day$ using synthetic wastewater. Also, higher-rate denitrification with actual plating wastewater was achieved up to $0.91kg\;NO_3{^-}-N/m^3\;day$ at the loading rate of $1.11kg\;NO_3{^-}-N/m^3\;day$. Additionally, continuous filtration was possible during up to 30 days without chemical cleaning in the range of 20 cmHg of transmembrane pressure. On the basis of the proposed stoichiometry, ${SO_4}^{2-}$ production could be estimated efficiently, while observed alkalinity consumption was somewhat lower than theoretical value. Consequently, a new process, MBR-GS is capable of high-rate autotrophic denitrification by compulsive flux and expected to be utilized as an alternative of renovation techniques for nitrogen removal from not only plating wastewater but also municipal wastewater with low C/N ratio.

A Patent Analysis on Impurity Removal and Catalysts for Crude Oil Purification (원유 불순물 제거 및 정제 관련 촉매 기술에 대한 특허 분석)

  • Jo, Hee-Jin;Moun, Seong-Guen;Jo, Young-Min;Chung, Yon-Soo
    • Clean Technology
    • /
    • v.16 no.1
    • /
    • pp.1-11
    • /
    • 2010
  • As crude oil with heavier and/or highly oxidized components prevails, purification technologies such as desulfurization, denitrilization and demetalization have become important issues to control contents of sulfur and other impurities affecting the quality of petroleum. Also, the importance of catalyst technologies related with crude oil purification has been emphasized to control the production and yield of products. In this paper, technology trends of impurity removal such as sulfur, nitrogen and metal components from crude oil and catalysts related with purification of crude oil were studied through patent analysis. The patents published or registered in Korea, U. S. A., Japan, and Europe from mid 1970's to 2009 had been analyzed based on the application tendency, the distribution of major applicants, and their active indices, etc. The technology flow was figured out to see the technology trends.

A Study on Nitrification and Denitrification in Biofilter & Sulfur- Limestone Single Stream Process (바이오필터와 황-석회석을 이용한 단일흐름 공정에서의 질산화와 탈질 연구)

  • Kim, Tae-Kyu
    • Journal of Environmental Health Sciences
    • /
    • v.32 no.5 s.92
    • /
    • pp.469-477
    • /
    • 2006
  • When denitrification was connected with a single stream process by using biofilter and sulfur-limestone, it was found that such connection enabled highly efficient nitrification without special unit operation of microorganisms or injection of external carbon sources which is being shown in general biological treatment processes. It was observed that in the trickling filter bed, decomposition of organic substances and highly efficient nitrification by both the forced pressure feed trickling and the air fan were simultaneously done. In the denitrification tank where sulfur-limestone was mixed at a certain ratio, limestone was used by autotrophic microorganisms as a source of supply for alkalinity, and nitrate $NO_{3}^{-}$-N was denitrified into nitrogen gas. And in the sulfur-limestone autotrophic denitrification, $NO_{3}^{-}-N\;or\;NO_{2}^{-}-N$ was denitrified as a sulfur compound in reduction state was oxidized into a final output of $SO_{4}^{-2}$. The mean concentration of the discharge water was 8.6 mg/l for T-N and 0.8 mg/l for T-P, respectively, and their mean treatment efficiency was 79.2% and 80.8%, respectively. Implementing highly efficient denitrification without injection of an external organic carbon source or internal return, it is concluded that the proposed process is suitable for a sewerage in a small village with the merits of low power consumption and easy maintenance.

Influence of Free Nitrous Acid on Thiosulfate-Utilizing Autotrophic Denitrification (티오황산염을 이용한 황탈질과 Free Nitrous Acid의 영향)

  • Ahn, Johwan;Bae, Wookeun
    • Journal of Korean Society on Water Environment
    • /
    • v.30 no.2
    • /
    • pp.220-225
    • /
    • 2014
  • A sequencing batch reactor (SBR) was operated to obtain thiosulfate-utilizing denitrifier cultivated with two types of electron accepter (nitrate and nitrite). Using the microbial biomass obtained from the SBR, batch tests were conducted with different nitrite concentrations (50 and 100 mg-N/L) at pH 7.0, 7.5 and 7.9 to see how free nitrous acid (FNA) negatively works on the thiosulfate-utilizing denitrification of nitrate. The specific denitrification rate (SDR) of nitrate was significantly influenced by pH and FNA. The presence of nitrite caused a remarked decrease of the SDR under low pH conditions, because of the microbiological inhibitory effect of FNA. The minimum SDR was observed when initial nitrite concentration was 100 mg-N/L at pH 7.0. Moreover. the SDR was influenced by the type of electron acceptor used during the SBR operation. Thiosulfate-utilizing denitrifier cultivated with nitrite showed smaller SDR on the thiosulfate-utilizing denitrification of nitrate than those cultivated with nitrate.

Characteristic Reactions in Anaerobic Nitrogen Removal from Piggery Waste (돈사폐수의 혐기성 질소제거공정에서 일어나는 특이반응)

  • Hwang, In-Su;Min, Kyung-Sok
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.3
    • /
    • pp.300-307
    • /
    • 2006
  • Anaerobic ammonium oxidation(ANAMMOX) is a novel process fur treatment of piggery waste with strong nitrogen. In this study, we investigated acid fermentation of organic matter, denitrificatiot reduction of sulfur compounds and P crystalization by hydroxyapatite during the treatment of wastewater with high strength of ammonium and organic matters by ANAMMOX process. Also, functions of hydroxylamine and hydrazine as intermedeates of ANAMMOX process were tested. This study reveals that various complex-reactions with anaerobic ammonium oxidation of piggery waste are happened and hydroxylamine and hydrazine play an important role in ANAMMOX reaction.

Simultaneous Nitrification and Denitrification using Submerged MBR packed with Granular Sulfur and Non-woven Fabric (부직포 및 황 충진 MBR을 이용한 포기조내 동시 질산화/탈질에 관한 연구)

  • Moon, Jin-Young;Hwang, Yong-Woo;Park, Ji-Hyoung
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.4
    • /
    • pp.439-446
    • /
    • 2009
  • This study was performed to evaluate SND(simultaneous nitrification and denitrification)efficiency, nitrogen removal efficiency and filtration function of non-woven fabric by using submerging MBR packed with granular sulfur covered with non-woven fabric filter. Synthetic wastewater was used as influent wastewater. Concentration of $NH_4{^+}-N$ in influent was maintained about 40 mg/L and the experiment was performed in four phases according to the flow rate. Nitrogen loading rate divided four phases ranging from $0.04 kg\;NH_4{^+}-N/m^3-day$ to $0.16 kg\;NH_4{^+}-N/m^3-day$. As a result, the maximum $NH_4{^+}-N$ removal rate was accomplished at $0.142 kg\;NH_4{^+}-N/m^3-day$ in nitrogen loading of $0.147 kg\;NH_4{^+}-N/m^3-day$. Nitrification efficiency was higher than 95% in all phases. $NO_3{^-}-N$ loading rate was adjusted ranging from $0.22 kg\;NO_3{^-}-N/m^3-day$ to $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal rate was accomplished up to $0.71 kg\;NO_3{^-}-N/m^3-day$ in $NO_3{^-}-N$ loading of $0.89 kg\;NO_3{^-}-N/m^3-day$. The maximum $NO_3{^-}-N$ removal efficiency was 95% in $NO_3{^-}-N$ loading of $0.22 kg\;NO_3{^-}-N/m^3-day$. T-N removal rate was 90% and concentration of T-N in effluent was 3.7 mg/L in T-N loading rate of $0.039 kg\;NO_3{^-}-N/m^3-day$. In this study, TMP in reactor with and without non-woven fabric filter were observed to define fouling of hollow-fiber membrane module. Reaching time to standard washing pressure(22 cm Hg) of two reactors were 29 days with non-woven fabric But the reactor without non-woven fabric reached standard washing pressure only after 4 days. Accordingly, non-woven fabric was demonstrated the superiority as a filtration ability. With high nitrogen removal rate and decreasing of fouling of membrane, MBR packed with granular sulfur covered with non-woven fabric filter submerging in activated sludge aeration tank can be used as an advanced treatment process.

High-Rate Nitrogen Removal using a Submerged Module of Sulfur-Utilizing Denitrification (침지형 황 탈질 모듈을 이용한 고속의 질소제거)

  • Moon, Jin-Young;Hwang, Yong-Woo;Ga, Mi-Sun
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.4
    • /
    • pp.429-437
    • /
    • 2007
  • This study aims to develop a sulfur-using denitrification process which is possible a renovation to advanced treatment plant submerging a simple module in activated sludge aeration tank. At first, the impact factor of sulfur-using denitrification was appreciated by the batch test. Secondly, reflecting a dissolved oxygen effect of sulfur-using denitrification that was confirmed by the batch test, in a continuous nitrification/sulfur-using denitrification, high-rate nitrogen removal reaction was induced at optimum condition controlling DO concentration according to phases. Also, inside and outside of sulfur-using denitrification module was covered with microfilter and the module was considered as an alternative of clarifier. Result of batch test for sulfur-using denitrification, $NO_2{^-}N$ was lower for consumption of alkalinity and sulfur than that of $NO_3{^-}-N$. These results revealed the accordance of theoretical prediction. In continuous nitrification/sulfur-using denitrification experiment, actual wastewater was used as a influent, and influent nitrogen loading rates were increased 0.04, 0.07, 0.11, $0.14kg\;N/m^3-day$ by changing hydraulic retention times. At this time, nitrogen loading rates of packed sulfur were increased 0.23, 0.46, 0.69, $0.93kg\;N/m^3-day$. As a result, nitrification efficiency was about 100% and denitrification efficiency was 93, 81, 79, 72%. Accordingly, nitrogen removal was a high-rate. Also the module of sulfur-using denitrification covered with microfilter did not make a fouling phenomena according to increased flux. And the module was achieved effluent suspended solids of below 10 mg/L without a clarifier. In conclusion, it is possible a renovation to advanced treatment plant submerging a simple module packed sulfur in activated sludge aeration tank of traditional facilities. And the plant used the module packed sulfur is expected as a effective facilities of high-rate and the smallest.