• Title/Summary/Keyword: 황색트랩

Search Result 53, Processing Time 0.02 seconds

Effect of Yellow Sticky Trap for Controlling Whitefly on Tomato Cultivated in Greenhouse (온실재배 토마토에 발생하는 가루이류에 대한 황색점착트랩 방제효과)

  • Park, Jong-Ho;Hong, Sung-Jun;Han, Eun-Jung;Shim, Chang-Ki;Lee, Min-Ho;Kim, Min-Jeong;Kim, Yong-Ki
    • Korean Journal of Organic Agriculture
    • /
    • v.20 no.4
    • /
    • pp.643-654
    • /
    • 2012
  • We conducted the experiment in order to evaluate the control effect of whitefly using the sticky trap. Both Bemisia tabaci and Trialeurodes vaporariorum were more attracted to yellow sticky trap than white or blue colored traps. When yellow sticky traps were installed in different height around tomato, catches of B. tabaci were not significantly different among the traps and catches of T. vaporariorum on the traps in the upper position were more than lower position. T. vaporariorum was more attracted to trap when host plant is smaller. The attracted number to yellow sticky traps were not significantly different between whiteflies (B. tabaci and T. vaporariorum) and their parasitoids (Encarsia formosa and Eretmocerus mundus). Yellow sticky trap reduced population density of both B. tabaci and T. vaporariorum by more than 80% on tomato nursery in a screen cage. Population density of whiteflies in greenhouse installed yellow sticky traps was less than one third of that in untreated greenhouse.

Diel Flight Activity of Liriomyza trifolii(Burgess) and Heights of Yello Sticky Traps in Gerbera (거베라에서 아메리카잎굴파리의 일주활동과 황색 끈끈이트랩 높이별 부착수 비교)

  • 송정흡;강상훈;이미경
    • Korean journal of applied entomology
    • /
    • v.39 no.3
    • /
    • pp.153-156
    • /
    • 2000
  • Spatial activities of Liriomyza trifolii (Burgess) were investigated weekly using yellow sticky trap which were placed at three different height and monitored during four time periods. Yellow sticky trap placed at plant height caught significantly more L. trifolii (Burgess) than did traps placed at 30 and 60cm above plant height. Diel activities of L. trifolii (Burgess) were monitored with yellow sticky traps at 1- and 2-h intervals during three time periods. Leafminer flight activity in May, July and October peaked from 1400 to 1800 hours, 0800 hours and from 1200 to 1400 hours, respectively. 2nd peak of flight activity only occurred in May. Attraction of L. trifolii (Burgess) for yellow sticky traps was affected by temperature as well as solar intensity. Male of L. trifolii (Burgess) appeared more responsive to yellow sticky traps than female regardless of trap height or time of day.

  • PDF

Limitation in Attraction Efficacy of Aggregation Pheromone or Plant Volatile Lures to Attract the Western Flower Thrips, Frankliniella occidentalis Infesting the Hot Pepper, Capsicum annuum, in Greenhouses (시설 고추재배지에서 꽃노랑총채벌레 집합페로몬과 식물 휘발성 유인제 효능의 한계성)

  • Kim, Chulyoung;Gwon, Gimyeon;Kim, Yonggyun
    • Korean journal of applied entomology
    • /
    • v.60 no.4
    • /
    • pp.369-377
    • /
    • 2021
  • Mass trapping of the western flower thrips, Frankliniella occidentalis, has been considered as an option to control this pest. This study applied the commercial lures to the hot pepper-cultivating greenhouses and assessed the enhancement of the attracting efficiency by adding to sticky traps. There was no color difference in the attracting efficiency between blue and yellow sticky traps. However, the installation position of the traps was crucial in the greenhouses. The more thrips were captured within host cropping area than outside areas of the crop. In vertical trap position, it was the most optimal to install the traps at the crop crown. Using these installation parameters, the yellow sticky traps captured approximately 1% population of the thrips. To enhance the trapping efficiency, the commercial lures containing aggregation pheromone or 4-methoxybenzaldehyde were added to the yellow sticky traps. However, these commercial lures did not significantly enhance the trapping efficiency compared to the yellow sticky trap alone. In contrast, Y-tube olfactometry assays confirmed the high efficiency of the aggregation pheromone or another plant volatile (methyl isonicotinate) to attract the thrips. Interestingly, these lure components had lower attracting efficiencies compared to the hot pepper flowers. The high attractive efficiency of the flowers was supported by the observation that the commercial lure was effective to enhance the trapping efficiency of the yellow sticky trap against F. occidentalis in Welsh onion (Allium fistulosum) field without any flowers. This study indicates the limitation of the commercial lures in application to hot pepper fields for the mass trapping of F. occidentalis. It also suggests active volatile component(s) from hot pepper flowers to attract F. occidentalis.

Sampling Plan for Bemisia tabaci Adults by Using Yellow-color Sticky Traps in Tomato Greenhouses (시설토마토에서 황색트랩을 이용한 담배가루이 표본조사법)

  • Song, Jeong Heub;Lee, Kwang Ju;Yang, Young Taek;Lee, Shin Chan
    • Korean journal of applied entomology
    • /
    • v.53 no.4
    • /
    • pp.375-380
    • /
    • 2014
  • The sweetpotato whitefly (SPW), Bemisia tabaci Gennadius, is a major pest in tomato greenhouses on Jeju Island because they transmit viral diseases. To develop practical sampling methods for adult SPWs, yellow-color sticky traps were used in commercial tomato greenhouses throughout the western part of Jeju Island in 2011 and 2012. On the basis of the size and growing conditions in the tomato greenhouses, 20 to 30 traps were installed in each greenhouse for developing a sampling plan. Adult SPWs were more attracted to horizontal traps placed 60 cm above the ground than to vertical trap placed 10 cm above the plant canopy. The spatial patterns of the adult SPWs were evaluated using Taylor's power law (TPL) and Iwao's patchiness regression (IPR). The results showed that adult SPWs were aggregated in each surveyed greenhouse. In this study, TPL showed better performance because of the coefficient of determination ($r^2$). On the basis of the fixed-precision level sampling plan using TPL parameters, more traps were required for higher precision in lower SPW densities per trap. A sequential sampling stop line was constructed using TPL parameters. If the treatment threshold was greater than 10 maximum adult SPWs on a trap, the required traps numbered 15 at a fixed-precision level of 0.25. In estimating the mean density per trap, the proportion of traps with two or more adult SPWs was more efficient than whole counting: ${\ln}(m)=1.19+0.90{\ln}(-{\ln}(1-p_T))$. The results of this study could be used to prevent the dissemination of SPW as a viral disease vector by using accurate control decision in SPW management programs.

Characteristic of Oviposition and Effect of Density Suppression by Yellow-colored Sticky Trap on Ricania shantungensis (Hemiptera: Ricaniidae) in Blueberry (블루베리에서 갈색날개매미충의 산란특성 및 황색끈끈이트랩의 산란 억제효과)

  • Kim, Dong Hwan;Kim, Hyeong Hwan;Yang, Chang Yeol;Kang, Taek Jun;Yoon, Jung Beom;Seo, Mi Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.20 no.4
    • /
    • pp.281-285
    • /
    • 2016
  • This study was conducted to investigate the characteristics of oviposition and the effect of density suppression by yellow-colored sticky trap on Ricania shantungensis in blueberry. The occurrence of an egg mass of R. shantungensis in the upper, middle and lower region were 56.6~60.2%, 23.8~28.1% and 11.7~19.7%, respectively. The number of egg masses in the branch was investigated. Percentage of the branch with one egg mass was greatest (50.9%) than with two (20.5%), three (14.6%) and over four (14.0%). The effect of yellow-colored sticky trap to reduce the number of R. shantungensis egg masses in blueberry was also investigated. In a month after yellow sticky trap installation, 17.1 adults of R. shantungensis were attracted per trap. Moreover, the number of egg masses on a tree in yellow-colored sticky trap plot was much lower (0.4) than control (1.3). Consequently, this result shows that use of yellow-colored sticky trap may contribute to decrease ovipisotion rate of R. shantungensis in blueberry.

Attraction Effect of Blue Light Emitting Trap Combination of Sticky Trap for Trialeurodes vaporariorum (Hemiptera : Aleyrodidae) Capture in Tomato Greenhouse (토마토 온실에서 청색 발광 및 점착트랩을 이용한 온실가루이 유인 효과)

  • Lee, Jung Sup;Lee, Jae Han;Kwon, Joon Kook;Park, Kyoung Sub;Kim, Jin Hyun;Lee, Dong Soo
    • Journal of Bio-Environment Control
    • /
    • v.27 no.3
    • /
    • pp.239-244
    • /
    • 2018
  • The effect of the trap equipped with diverse light-emitting lamp on the lure efficiency of whitefly (Trialeurodes vaporariorum) was investigated in the greenhouse cultivating tomato. The light-emitting lamp type equipped to trap was blue, yellow, and white light-emitting lamp. The experiment results showed that trap equipped with blue light-emitting lamp captured the most number of $110{\pm}3.2$ adult whitefly and the number of captured adult whitefly was $71{\pm}1.4$ at yellow light-emitting lamp trap and $45{\pm}1$ at white light-emitting lamp trap respectively. The wavelength distribution band of blue light-emitting lamp was between 330 nm and 430 nm. The wavelength band of yellow and white light-emitting lamp contain repellent wavelength band at the same time. These results show that the trap equipped with blue light-emitting lamp could be used effectively for whitefly control and prevention in the greenhouse cultivating tomato.

Responses of Phyllotreta striolata and Athalia rosae ruficornis to Colored-sticky Traps and Aggregation Pheromone and Seasonal Fluctuations in Radish Fields on Jeju Island (제주지역 무에서 벼룩잎벌레와 무잎벌의 색트랩과 집합페로몬에 대한 반응과 연중 발생특성)

  • Song, Jeong Heub;Yang, Young Taek;Yang, Cheol Jun;Choi, Byeong Ryul;Jwa, Chang Sook
    • Korean journal of applied entomology
    • /
    • v.54 no.4
    • /
    • pp.289-294
    • /
    • 2015
  • Striped flea beetle, Phyllotreta striolata (SFB) and turnip sawfly, Athalia rosae ruficornis (TSF) are two economically important sporadic pests in radish fields on Jeju island. The response of adult SFB and TSF to a mixture of aggregation pheromone, (+)-(6R,7S)-himachala-9,11-diene and host plant volatile, allyl isothiocyanate (HAI), as well as to yellow and blue sticky traps was examined in radish fields. Adult SFB was more attracted to the sticky trap with HAI, regardless of the color of the sticky trap; however, adult TSF was more attracted on the yellow sticky trap than blue, and no effect of HAI was observed. The adult SFB and TSF can be effectively monitored using yellow sticky traps placed 10 cm above the plant canopy. SFB and TSF had 3 and 5 peak times in a year, respectively. The first peak occurred in the middle of March for SFB and mid-late of April for TSF. We expect that the results of the present study can facilitate minimizing the damage caused by the two important pests in commercial radish fields.

Control Effects of Bemisia tabaci on Eggplant using Sticky Trap (가지에서 끈끈이트랩을 이용한 담배가루이 방제효과)

  • Kim, Ju;Choi, In-Young;Lee, Jang-Ho;Kim, Ju-Hee;Lim, Joo-Rag;Cheong, Seong-Soo;Kim, Jin-Ho
    • Korean Journal of Organic Agriculture
    • /
    • v.25 no.4
    • /
    • pp.759-772
    • /
    • 2017
  • This experiment was conducted to develop control method for Bemisia tabaci (Gennadius) on eggplant using sticky trap method. According to the color of the sticky traps, the attractiveness of the B. tabaci was the highest in the yellow trap, followed by the green and orange. However, white, blue, red, black and green sticky traps have reduced attractiveness of B. tabaci. In order to improve the efficiency and attractiveness of sticky trap to the B. tabaci, the different kinds of sugars such as glucose, fructose, oligosaccharide, starch syrup and pure sugar were added to sticky traps respectively. However, the effect of B. tabaci attractiveness was low in starch syrup, pure sugar, and non-treated sticky traps. The attracting effect of B. tabaci was depending on the location of sticky trap. The highest value was obtained where sticky traps were located in the top of the eggplant, followed by 30 cm above from the top level. In addition, we were installed up to 40 sticky traps to determine the optimal amount of sticky traps to control B. tabaci in eggplant. When increasing the sticky traps, the number of adult and nymphs of B. tabaci were tended to be decreased significantly. This tendency was more effective in the latter stages than in the early stages. As the number of sticky traps increased, not only the growth rate of eggplant, leaf length, and stem diameter were to be better. But also number of fruits and product marketable value were increased at the early stage of growing as well. The study had proven that the sticky traps had an effect on increasing the yield at the early stage of growth, but the efficiency of controlling decreased due to the high density of B. tabaci of the next generation.

Efficient Occurrence Monitoring by Yellow Sticky Traps for Major Flying Pests in Strawberry Greenhouses (시설딸기 주요 비행해충의 황색끈끈이트랩 이용 효율적인 발생예찰)

  • Yang, Cheol Jun;Song, Jeong Heub;Yang, Young Taek;Kim, Hyo Jeong;Song, Min A;Jwa, Chang Sook
    • Korean journal of applied entomology
    • /
    • v.56 no.3
    • /
    • pp.309-314
    • /
    • 2017
  • Sampling plan using yellow sticky traps for the major strawberry flying pests - western flower thrips Frankliniella occidentalis adults, cotton aphid Aphis gossypii alate and greenhouse whitefly Trialeurodes vaporarium adults was developed to determine the initial occurrence time. The analyzed trap data were obtained from three commercial strawberry greenhouses for the whole growing season (September to May of the following year) during 2013 to 2017 in Jeju province. Three flying pests showed the aggregated distribution patterns resulted from commonly used regression techniques - Taylor's power law and Iwao's patchiness regression. Taylor's power law was better description of mean-variance relationship of the western flower thrips and the cotton aphid than Iwao's patchiness regression, otherwise greenhouse whitefly was better described by Iwao's patchiness regression. There were highly significant correlated among mean density per trap, maximum density and proportion of traps with more than 10 individuals. To estimate 4.0 heads of mean density per trap, the minimum number of traps were required 13 traps for western flower thrips, 11 traps for cotton aphid and 10 traps for greenhouse whitefly. The sequential sampling plans at the fixed precision level 0.25 were developed using parameters of Taylor's power law for western flower thrips and cotton aphid, and of Iwao's patchiness regression for greenhouse whitefly.

Control Effects of Frankliniella occidentalis by using Trap Plants and Orius laevigatus in Chrysanthemum PVC House (시설국화에서 트랩식물과 미끌애꽃노린재를 이용한 꽃노랑총채벌레 방제)

  • Choi, Yong-Seok;Whang, In-Su;Park, Deog-Kee;Lee, Jun-Seok;Ham, Eun-Hye
    • The Korean Journal of Pesticide Science
    • /
    • v.17 no.4
    • /
    • pp.440-447
    • /
    • 2013
  • F. occidentalis (WFT, western flower thrips) is a major pest in artificial chrysanthemum houses. Nnumber of WFT attracted to yellow sticky trap was highest at trap plant and lowest at 15 and 20m places away from trap plant. Number of WFT attracted to yellow stick trap when trap plant was placed in chrysanthemum house 30 days after planting (resident WFT) was 4.4~7.7 times more than at 5 and 10 m places away from trap plant and when trap plant was placed in chrysanthemum house immediately after planting (resident WFT) was 5.7~9.4 times more at 5 and 10 m places away from trap plant. Number of WFT between the place trap plant located and unlocated was undifferent when cultured chrysanthemum formed flower. In case of the plot that trap plant and natural enemy was used simultaneously, number of WFT was highter then chemicals plot. In case of the plot that trap plant and chamicals (chemicals was sprayed on trap plant only) WFT was controlled in trap plant place only but density of WFT on 5m and 10m places away from trap plant was increased. Therefore, WFT could be controlled effectively by use of trap plant (flowering yellow chrysanthemum) and natural enemy simultaneously.