• Title/Summary/Keyword: 황산염 환원율

Search Result 25, Processing Time 0.019 seconds

Sulfate Reduction of Rice Paddy, Foreshore, and Reservoir Soil (논과 갯벌과 저수지 토양의 황산염 환원)

  • Kim, Min-Jeong;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.20 no.10
    • /
    • pp.1468-1475
    • /
    • 2010
  • Sulfate reduction rates (SRR) using $^{35}SO_4^{-2}$, sulfide producing rates (SPR) using gas chromatography, the number of sulfate reducing bacteria (SRB) using the most probable number (MPN) method, and soil components (moisture, ammonium, total nitrogen, total organic carbon, total carbon, total inorganic phosphorus, total phosphorus, and sulfate) using standard methods in the organic/conventional rice paddy soils, cleaned/polluted reservoir soils, and cleaned/polluted foreshore soils were studied with the change of seasons. The average SRR was more related to the number of SRB and soil components (especially nitrogen and phosphorus) than sulfate concentration. SRR was also recorded to be highest in October soil samples. However, SPR was higher in foreshore soils containing a high concentration sulfate than in fresh water soils, and it was also recorded to be higher in the polluted areas than in clean areas. From these results, we can conclude that the SRR and SPR of anaerobic environments were affected by the number of SRB, soil components and temperature.

Sulfate Reduction in the Marine Environments: Its Controlling Factors and Relative Significance in Mineralization of Organic Matter (해양환경의 황산염 환원율 조절요인 및 유기물 분해에 있어 황산염 환원의 중요성)

  • 현정호;이홍금;권개경
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.2
    • /
    • pp.210-224
    • /
    • 2003
  • Sulfate reduction is a microbiological process which occurs ubiquitously in anaerobic marine environment. Sulfate reducing bacteria play a significant role in anaerobic decomposition of organic matter and regeneration of inorganic nutrients which supports the primary production in the water column (i.e., benthic-pelagic coupling) and, in special case, could be responsible for the harmful algal bloom in the coastal marine environment. Summary of the sulfate reduction rates reported in various marine sedimentary environments revealed that supply of organic substrates and presence of various electron acceptors (i.e., $O_2$, NO$_{3}$$^{[-10]}$ , Fe(III) and Mn(IV), etc.) for other aerobic and anaerobic respiration directly affect the sulfate reduction rate and relative significance of sulfate reduction in organic matter mineralization. Significance of temperature, macrophytes and bioturbation is discussed as factors controlling supply of organic substrates and distribution of electron acceptors. Finally, we suggest studies on the anaerobic microbiological processes associated with biogeochemical element cycles in the coastal environments of Korea where massive operation of organic enriched fish cage farm, frequent occurrence of toxic algal bloom and hypoxia and conservation of tidal flat are of major environmental issues.

Effect of High Concentration of Sulfate on Anaerobic Digestion of Propionic Acid Using an Upflow Anaerobic Sludge Blanket (상향류 혐기성 블랭킷 반응조를 이용한 프로피온산의 혐기성 처리시 고농도 황산염의 영향)

  • Lee, Chae-Young
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.75-82
    • /
    • 2008
  • Two UASB reactors were operated to investigate the effect of high concentration of sulfate on anaerobic digestion of propionate using an upflow anaerobic sludge blanket (UASB) reactor. An organic loading rate of $1.2kg\;COD/m^3{\cdot}d$ and a hydraulic retention time of 1.6 d were maintained during this study. In the absence of sulfate, the UASB reactor achieved about 95% removal of chemical oxygen demand whereas in the presence of $2,000\;SO_4^{2-}mg/L$, the COD removal rate decreased to 83% due probably to the inhibition of dissolved sulfide inhibition. Interactions between the methane producing bacteria (MPB) and sulfate reducing bacteria (SRB) were measured to investigate the competition between MPB and SRB. The MPB consumed average 58% of the available electron donors at $COD/SO_4^{2-}$ ratio of 1. Propionate was consumed mainly by SRB, converting sulfate into sulfide and suppressing the methane production. The specific methanogenic activity (SMA) using acetate and propionate increased as microorganism acclimated to the substrate.

  • PDF

Biodegradation of PAHs in anaerobic conditions

  • 우승한;임경희;박종문
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.153-157
    • /
    • 2004
  • 다양한 혐기성 조건에서 다환방향족탄화수소(PAHs)로 오염된 토양의 미생물 분해 연구를 수행하였다. 대표적인 다환방향족탄화수소인 phenanthrene과 fluorene을 토양과 물에 오염시켜서 약 100일 동안 저감정도를 관찰하였고, 실제 다환방향족탄화수소로 오염된 현장 토양을 이용 혐기성하에서 다환방향족탄화수소의 생분해 가능성을 확인하였다. 미생물 접종원은 혐기성 조건에서 다환방향족탄화수소에 노출시킨 슬러리가 사용되었다. 황산염 환원조건, 질산염 환원조건, 메탄생성조건 등의 다양한 혐기성 조건에서 실험을 수행한 결과, 메탄생성조건 > 질산염 환원조건 > 황산염 환원조건의 순서로 분해가 잘 일어났다. 또한 현장오염토양의 경우 34일간 처리 후 메탄생성조건에서 최대 72%의 분해율을 보였다.

  • PDF

Rates and Controls of Organic Matter Mineralization and Benthic Nutrient Release in the Coastal Sediment Near Lake Shihwa (시화호 인근 연안 퇴적물의 유기물 분해 특성, 저층 영양염 용출 및 조절요인)

  • SHIN, JAE-HYUK;AN, SUNG-UK;CHOI, JAE-HOON;LEE, HYO-JIN;WOO, SEUNG-BUHM;HYUN, JUNG-HO;KIM, SUNG-HAN
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.26 no.2
    • /
    • pp.110-123
    • /
    • 2021
  • We investigated geochemical constituents of pore-water and sediment, rates of organic carbon (Corg) oxidation and sulfate reduction (SR), and benthic nutrient flux (BNF) to elucidate characteristic of Corg oxidation and its control in the coastal area near Lake Shihwa. The study sites were selected in the vicinity of Soraepogu (E0), Songdo tidalflat (E1) and Oido dock (E3) and in front of floodgate Shihwa tidal plant (E5). The Corg contents in the sediments and concentrations of ammonium and phosphate in pore water exhibited the highest value at EO, and gradually decreased toward the outer sea (E1, E3, E5). Rates of anaerobic Corg oxidation (260.6 mmol C m-2 d-1) and SR (91.4 mmol S m-2 d-1) at E0 were 4-9 and 6-54 times higher than at the site of outer sea (E1, E3, E5). Rates of SR at E3 and E5 accounted for 11-23% of anaerobic Corg oxidation, whereas it comprised 47-70% of anaerobic Corg oxidation at E0 and E1. Rates of Corg oxidation and SR showed a highly positive correlation with the concentration of dissolved organic carbon (r2 = 0.795 and 0.777, respectively). The BNF at E0, E1, and E3 accounted for 120-510% and 26-178%, respectively, of the N and P required for primary production in the water column. Overall results suggest that the Corg oxidation in the sediment controlled by concentration of dissolved organic carbon in the pore water and the excessive Corg oxidation stimulates the benthic nutrient flux, which may cause a phytoplankton bloom in the water column.

Anaerobic Mineralization of Organic Matter and Sulfate Reduction in Summer at Ganghwa Intertidal Flat, Korea (하계 강화도 갯벌의 혐기성 유기물 분해능 및 황산염 환원력)

  • Hyun, Jung-Ho;Mok, Jin Sook;Cho, Hye Youn;Cho, Byung Cheol;Choi, Joong Ki
    • Journal of Wetlands Research
    • /
    • v.6 no.1
    • /
    • pp.117-132
    • /
    • 2004
  • Despite its significance in understanding ecological structure and biogeochemical element cycles, there have been few studies on the microbial mineralization of organic matter and mineralization pathway in the intertidal flat of Korea. We measured anaerobic mineralization of organic matter and sulfate reduction rate, and evaluated the significance of sulfate reduction in total anaerobic carbon respiration at the southern part of Ganghwa Island. Depth-integrated carbon mineralization rate down to 6 cm depth ranged from 41.9 to $89.4mmol\;m^{-2}d^{-1}$, which accounted for approximately 216 tons of organic matter mineralization in entire intertidal flat area of Ganghwa($300km^2$). The results indicated that capacity for the organic matter mineralization in the Ganghwa tidal flat is comparable to highly productive salt marsh environments. Mineralization rates in the sediment amended with acetate were 2~5 times higher than in unamended sediment. The results implied that microbial mineralization was limited by the availability of organic substrates, and the organic matter mineralization capacity seems to be higher than estimated at ambient organic substrate level. Depth-integrated sulfate reduction rates within 6 cm depth of the sediment ranged from 20.7 to $45.1mmol\;SO{_4}^{2-}m^{-2}d^{-1}$, and sulfate reduction was mostly responsible for organic matter remineralization. It should be noticed that the increase of $H_2S$ in the sulfate reduction dominated tidal flat may result in the decrease of biological diversity.

  • PDF

Effect of Sulfate and Heavy Metals on Methanogenic Activation of in the Anaerobic Digestion of Tannery Wastes (피혁폐수의 혐기성 소화시 황산염과 중금속이 메탄균 활성에 미치는 영향)

  • Shin, Hang Sik;Oh, Sae Eun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.4 no.1
    • /
    • pp.13-21
    • /
    • 1996
  • For treating tannery wastewater containing high sulfate and heavy metals, test was performed to assess their performance, competition between SRB (sulfate reducing bacteria) and MPB (methane producing bacteria), and the activity of MPB according to change of chromium concentrations. COD removal efficiency was above 70% at VLR (volumetric loading rate) of 2.0 gCOD/I.day and HRT (hydraulic retention time) of 18hrs at $35^{\circ}C$. In the competition between SRB and MPB, about 15% of the removed COD was utilized by SRB in the begining, but it became 43% at the end. It indicated that MPB was strongly suppressed by the occurrence of significant sulfate reduction since a large electron flow was uptaken by SRB. For the entire experiment, removal efficiencies of chromium concentration were more than 90%. Despite high removal efficiencies of chromium concentration, performance of reactor did not change significantly during the experimental periods. Expecially, chromium (III) is tannery wastewater is less toxic than chromium (VI).

  • PDF

Lignocellulose Biodegradation and Interaction between Cellulose and Lignin under Sulfate Reducing Conditions (황산염 환원 조건에서 리그노셀룰로오스의 분해 및 리그닌과 셀룰로오스의 상호작용)

  • Ko, Jae-Jung;Kim, Seog-Ku;Shimizu, Yoshihisa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.131-137
    • /
    • 2007
  • In this study, the biodegradation test on lignocellulose under sulfate reducing conditions was carried out. In particular, the interaction between cellulose and lignin was investigated with various g-cellulose/g-lignin (C/L) ratios: 42.15, 4.59, 2.51, 1.14 and 0.7. It was shown that the rate of cellulose degradation decreased in proportion to the lignin content. Assuming first order degradation kinetics, the consequences of competitive inhibition were graphically shown for different C/L ratios. The relation between cellulose reduction rate and C/L ratio was expressed by logarithm function with a determination coefficient of 0.97. Lignocellulose reduction rate was also described as a logarithm function of C/L ratio showing a inhibition effect by lignin. In the mean time, the rate of lignin decomposition was higher at C/L ratio of 2.51 and 1.14 compared with C/L ratios of 4.59 and 0.7, indicating that excessive extra carbon source is not appropriate for lignin biodegradation.

  • PDF

Anaerobic Degradation of Petroleum Hydrocarbons in Soil by Application of a Digestion Sludge (소화슬러지를 이용한 토양 내 석유계 탄화수소의 혐기성 분해)

  • Lee, Tae-Ho;Byun, Im-Gyu;Park, Jeung-Jin;Park, Hyun-Chul;Park, Tae-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.938-943
    • /
    • 2007
  • Anaerobic degradation of petroleum hydrocarbons in a soil artificially contaminated with 10,000 mg/kg soil of diesel fuel was tested by adding an anaerobic sludge taken from a sludge digestion tank. Treatments of soil(50 g) with 15 mL/kg soil and 30 mL/kg soil of the digestion sludge(2,000 mg/L of vss(volatile suspended solids)) showed 37.2% and 58.0% of total petroleum hydrocarbons(TPH) removal during 90 days incubation, respectively. In evaluation of several anaerobic conditions including nitrate reducing, sulfate reducing, methanogenic, and mixed electron accepters condition, treatments with the digested sludge showed significant degradation of diesel fuel under all anaerobic conditions compare to a control treatment of soil without the sludge and a treatment of autoclaved soil treatment with autoclaved digestion sludge. The rate of diesel fuel degradation was the highest in the treatment with the sludge and mixed electron accepters (75% removal of TPH) for 120 days incubation followed in order by sulfate reducing, nitrate reducing, methanogenic condition as 67%, 53%, 43%, respectively. However, the removal rate of non-biodegradable isoprenoid was the highest in the sulfate reducing condition. These results suggest that anaerobic degradation of diesel fuel in soil with digested sludge is effective for practical remediation of soil contaminated with petroleum hydrocarbons.

Treatment of Acid Mine Drainage Using Immobilized Beads Carrying Sulfate Reducing Bacteria (황산염환원균 고정화 담체를 이용한 산성광산배수 처리)

  • Kim, Gyoung-Man;Hur, Won;Baek, Hwan-Jo
    • Economic and Environmental Geology
    • /
    • v.41 no.1
    • /
    • pp.57-62
    • /
    • 2008
  • The application of constructed subsurface-flow wetlands for treatment of wastewater from abandoned mines is being increased. Crushed limestone, oak chips, and mushroom composites are often employed in a bulk form, as the substrates in the bed media. Efficiency of the subsurface-flow treatment system drops with time as the hydraulic conductivity of the wetland soil decreases significantly, presumably due to chemical reactions with the wastewater. The purpose of this study is to investigate the applicability of immobilized beads carrying sulfate reducing bacteria for acid mine drainage treatment system. The ingredients of immobilized beads are organic materials such as mushroom composite and oak chips, limestone powder for a pH buffer, mixed with a modified Coleville Synthetic Brine. It was found that immobilized beads are more efficient than the bulk form for pH recovery, sulfate and heavy metal removal.