• Title/Summary/Keyword: 황산염환원

Search Result 121, Processing Time 0.021 seconds

Deactivation of SCR Catalysts Applied in Power Plants (화력발전소 SCR 촉매의 활성저하 특성)

  • Lee, Jung-Bin;Kim, Dong Wha;Lee, Chang-Yong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.104-110
    • /
    • 2010
  • Deactivation of SCR catalysts applied in coal, orimulsion, and LNG power plants in Korea were studied for the regeneration of the deactivated catalyst. The catalysts were characterized by XRD, ICP-AES, BET and SEM, and were examined for ammonia SCR. Deactivation of SCR catalyst applied in coal power plant was mainly caused by the blockade of the pore due to the deposition of sulfate and particulate related to the ingredients of the fuel. The surface area of SCR catalyst applied in orimulsion power plant decreased considerably by the accumulation of the compounds of vanadium, sulfur, and magnesium on the surface of the catalyst. The compounds of vanadium and sulfur were related to the ingredients of the fuel, and the compound of magnesium was related to the additive of the fuel. The activity of the deactivated catalyst for ammonia SCR, however, decreased slightly. Despite the long use for more than two-year, deactivation of SCR catalyst applied in LNG power plants hardly occurred.

Effect of Moisture on Stabilization of Municipal Solid Wastes in Anaerobic Landfill (혐기성 폐기물매립지에 있어서 수분이 매립폐기물의 안정화에 미치는 영향)

  • Kim, Hye-Jin;Kim, Joung-Ho;Oh, Dong-Ik;Kim, Seok-Chan;Lee, Nam-Hoon;Kim, Nack-Joo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.13 no.1
    • /
    • pp.124-130
    • /
    • 2005
  • Landfilling is most widely used as the final disposal tool of solid wastes. Solid wastes landfilled are stabilized by microbial degradation which is affected by several factors such as moisture, oxygen, pH, alkalinity, sulphate, nutrient, inhibitor, hydrogen, and temperature. Especially moisture plays a major role in microbial degradation. In this study, the effects of moisture on the degradation of municipal solids waste (MSW) were investigated. Four lysimeters with four different levels of moisture content i.e., 20, 30, 40, and 50% were operated; lysimeters were packed with MSW, and anaerobically operated. Anaerobic lysimeters with higher moisture content produced more $CO_2$ and landfill gases (LFG). It means that the moisture has a positive effect on the microbial degradation.

  • PDF

Study on Organic Material Used in Bioreactor for the Treatment of Acid Mine Drainage (산성 광산 폐수 처리용 생물반응기에 사용되는 유기물의 연구)

  • 김경호;나현준;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.1
    • /
    • pp.45-50
    • /
    • 1997
  • The change of industrial structure has brought the sharp declination of mine products, and has made many mines closed, which results in environmental pollution by untreated acid mine drainage(AMD). AMD with low pH and high concentration of heavy metals could severely destroy the ecosystem. Many researches have been carried out for the treatment of AMD. In this study, we have treated AMD with oak compost, mushroom compost, sludge cake and cow manure which usually used in AMD treatment systems, and compared the capability of each organic matter. Cow manure and oak compost have been most effective among 4 organic materials. Oak compost removed the heavy metals by ion exchange between Ca-rich particles and soluble heavy metal ions. It also captured the heavy metals using bound functional groups like -OH and -COO-. Sulfate reducing bacteria existing in the cow manure removed effectively heavy metals by producing metal sulfide compound. Therefore, it is effective to use both organic materials in mixture on the treatment of AMD.

  • PDF

Anaerobic Corrosion Properties of Sangpyeongtongbo Excavated at Bigyeongdo, Seosan (서산 비경도 출수 상평통보의 혐기성 부식 특성)

  • Kim, Kyu Been;Chung, Kwang Yong
    • Journal of Conservation Science
    • /
    • v.33 no.3
    • /
    • pp.167-179
    • /
    • 2017
  • In this study, Sangpyeontongbo excavated at Bigyeongdo, Seosan, were investigated to determine the components of the corrosion products that were formed while they were buried underwater in an anaerobic environment. The causes of corrosion product formation were also determined. Microstructure observation, element mapping, principle component analysis for each year, and the detection of corrosion products were carried out. Results indicate that the concretions of corrosion products on the surface are needle-, hexahedral-, and octahedral-shaped; Pb, Cu, and S were among the elements detected. The Cu-S layer was clearly verified using element mapping. An analysis of major elements for each layer showed that Cu, S, and Pb were present and that most Zn was eliminated. The corrosion products detected were $PbCO_3$ (concretion) and $Cu_{1.96}S$ (metal). Accordingly, the anaerobic corrosion properties of Sangpyeongtongbo are summarized as follows: dezincification, copper sulfide, and lead compound.

Effect of Stabilizer on Corrosion and Cavitation Damage in the Sea Water of Electroless Nickel Plating Layer (무전해 니켈도금 층의 해수 내 부식과 캐비테이션 손상에 대한 안정제 효과)

  • Park, Il-Cho;Kim, Seong-Jong
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.107-107
    • /
    • 2018
  • 무전해 니켈도금 용액의 성분은 Ni(II)염, 환원제, 적합한 금속 배위 리간드, 안정제 및 특정 특성 요구에 대한 첨가제를 포함한다. 일반적으로 도금 욕에는 미량의 안정제가 함유되어 있다. 만약 적절한 안정화 시스템이 없는 도금 욕에서 도금 공정 시 도금 시작 직후에 많은 양의 니켈 플레이크(Ni flake)가 생성되어 빠르게 도금 용액이 분해되어 더 이상 도금이 어렵게 된다. 그러나 무전해 도금 욕에서 안정제의 역할 및 도금 층에 미치는 영향에 대한 연구는 여전히 부족한 실정이다. 따라서 본 연구에서는 $Pb^{2+}$ 안정제 농도가 도금 층에 미치는 영향과 캐비테이션 침식 실험을 통해 그 내구성을 평가하고자 하였다. 무전해 니켈코팅을 위한 모재는 회주철(FC250)을 $19.5mm{\times}19.5mm{\times}5mm$의 크기로 가공하였다. 회주철의 인장강도는 $330N/mm^2$이며, 그 성분 조성(wt.%)은 3.23 C, 1.64 Si, 0.84 Mn, 0.016 P, 0.013 S 그리고 나머지는 Fe이다. 시험편은 SiC 페이퍼 #1200까지 연마하여 시험편의 표면 거칠기는 $1.6-2.1{\mu}m$ 범위 내로 제작하였다. 무전해 도금 전 시험편은 탈지를 위해 상온의 아세톤 용액에서 3분간 초음파 세척하고, $90^{\circ}C$의 알카리 수용액으로 5분간 세척하였다. 그리고 표면 활성화를 위한 산세척은 5% 황산용액에서 30초 동안 실시하였다. 도금조로 500mL 비커를 사용하였으며, 모든 시험편은 2시간 동안 무전해 니켈도금을 실시하였다. 그리고 니켈도금 층의 내식성과 내구성을 평가하기 위해 전기화학적 분극 실험을 통한 타펠분석과 ASTM G32 규정에 의거한 캐비테이션 침식 실험을 실시하였다. 그 결과 안정제 농도가 도금 속도와 도금 층의 성분 변화에 크게 영향을 미쳤으며, 그에 따라 도금 층의 내식성과 내구성이 크게 변화되었다.

  • PDF

Determination of brightener concentrations in Watt-type Ni Electroplating bath using dilution titration-cyclic voltammetry stripping (DT-CVS) (희석 적정-순환전류전압법을 이용한 와트욕 내부 광택제 농도 모니터링)

  • Choe, Seung-Hoe;Gwon, Yeong-Hwan;Lee, Ju-Yeol;Kim, Man;Park, Yeong-Bae;Lee, Gyu-Hwan
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2018.06a
    • /
    • pp.30-30
    • /
    • 2018
  • 스마트 도금공장을 구축하기 위해서는 도금액 내부의 화학 물질 농도 변화를 측정할 수 있는 화학 센서 기술이 필수적으로 요구된다. 와트욕은 대표적인 고속 니켈 도금액 중 하나로 기본적으로 황산니켈, 염화니켈, 보릭산의 염과 함께 케리어(type-1 광택제), 광택제(type 2-광택제), 응력 제어제 등의 유기 첨가제로 구성되어 있다. 이러한 유기 첨가제는 전차된 니켈층의 두께 균일도, 조도, 미세 구조, 내부 응력 등 다양한 특성을 제어하며, 정밀한 농도 관리가 필수적으로 요구되나, 분석 기술의 부재로 인하여 지금까지도 대부분의 액관리는 할셀법이나 작업자의 경험에 의존하고 있다. Cyclic voltammetry stripping(CVS) 방법은 전기화학 분석 과정에서 나타나는 첨가제의 가속, 감속 특성 등과 여기에 수반되는 stripping peak의 변화를 이용하여 개별 첨가제의 농도를 측정하는 방법이며, 지금까지 인쇄회로기판의 비아필 공정, 전해 동박 제조, 반도체 배선 등 구리도금 산업 전반에 걸쳐 첨가제 관리에 효과적으로 적용되고 있다. 그러나 수소 발생으로 인한 stripping 효율 문제로 인하여 니켈, 주석, 아연 등 표준 환원 전위가 높은 금속 도금액 내부 첨가제 농도 측정은 아직 어려운 상황이다. 본 연구에서는 이 문제를 극복하기 위해 염소를 과량 첨가한 구리 도금액을 CVS 분석의 base 용액으로 이용하여 니켈 도금액 내부 여러 광택제 (polyetylene glycol(PEG) 계열, thiourea 계열, 2-butyne-1,4-diol 등) 농도를 측정하는 법을 제시하였다. 제시된 방법은 CVS 분석 과정에서 구리-염소 사이의 상호 작용으로 인해 생성되는 3가지 stripping peak의 상대적인 크기 변화가 첨가제 농도에 따라 영향을 받는다는 사실에 기반하였다. 본 연구에서는 여기에 관한 원인에 대해 고찰하였으며, 제시된 방법을 통해 광택제 계열 첨가제 농도 측정을 선택적으로 할 수 있다는 것을 증명하였다.

  • PDF

Comparison of Sulfate Reduction Rates Associated with Geochemical Characteristics at the Continental Slope and Basin Sediments in the Ulleung Basin, East Sea (동해 울릉분지에서 대륙사면과 분지 퇴적물의 지화학적 특성에 따른 황산염 환원 비교)

  • You, Ok-Rye;Mok, Jin-Sook;Kim, Sung-Han;Choi, Dong-Lim;Hyun, Jung-Ho
    • Ocean and Polar Research
    • /
    • v.32 no.3
    • /
    • pp.299-307
    • /
    • 2010
  • In conjunction with geochemical characteristics, rate of sulfate reduction was investigated at two sediment sites in the continental slope and rise (basin) of the Ulleung Basin in the East Sea. Geochemical sediment analysis revealed that the surface sediments of the basin site (D2) were enriched with manganese oxides (348 ${\mu}mol$ $cm^{-3}$) and iron oxides (133 ${\mu}mol$ $cm^{-3}$), whereas total reduced sulfur (TRS) in the solid phase was nearly depleted. Sulfate reduction rates (SRRs) ranged from 20.96 to 92.87 nmol $cm^{-3}$ $d^{-1}$ at the slope site (M1) and from 0.65 to 22.32 nmol $cm^{-3}$ $d^{-1}$ at the basin site (D2). Depth integrated SRR within the top 10 cm depth of the slope site (M1; 5.25 mmol $m^{-2}$ $d^{-1}$) was approximately 6 times higher than that at the basin site (D2; 0.94 mmol $m^{-2}$ $d^{-1}$) despite high organic content (>2.0% dry wt.) in the sediment of both sites. The results indicate that the spatial variations of sulfate reduction are affected by the distribution of manganese oxide and iron oxide-enriched surface sediment of the Ulleung Basin.

Biotic and Abiotic Reduction of Goethite (α-FeOOH) by Subsurface Microorganisms in the Presence of Electron Donor and Sulfate (전자공여체와 황산염 이용 토착미생물에 의한 침철석(α-FeOOH) 환원 연구)

  • Kwon, Man Jae;Yang, Jung-Seok;Shim, Moo Joon;Lee, Seunghak;Boyanov, Maxim;Kemner, Kenneth;O'Loughlin, Edward
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.1
    • /
    • pp.54-62
    • /
    • 2014
  • To better understand dissimilatory iron and sulfate reduction (DIR and DSR) by subsurface microorganisms, we investigated the effects of sulfate and electron donors on the microbial goethite (${\alpha}$-FeOOH) reduction. Batch systems were created 1) with acetate or glucose (donor), 2) with goethite and sulfate (acceptor), and 3) with aquifer sediment (microbial source). With 0.2 mM sulfate, goethite reduction coupled with acetate oxidation was limited. However, with 10 mM sulfate, 8 mM goethite reduction occurred with complete sulfate reduction and x-ray absorption fine-structure analysis indicated the formation of iron sulfide. This suggests that goethite reduction was due to the sulfide species produced by DSR bacteria rather than direct microbial reaction by DIR bacteria. Both acetate and glucose promoted goethite reduction. The rate of goethite reduction was faster with glucose, while the extent of goethite reduction was higher with acetate. Sulfate reduction (10 mM) occurred only with acetate. The results suggest that glucose-fermenting bacteria rapidly stimulated goethite reduction, but acetate-oxidizing DSR bacteria reduced goethite indirectly by producing sulfides. This study suggests that the availability of specific electron donor and sulfate significantly influence microbial community activities as well as goethite transformation, which should be considered for the bioremediation of contaminated environments.

The Enhancement of Recycling Processes Efficiency of Lithium Ion Batteries; A Review (리튬이온전지 재활용공정 효율 향상을 위한 공정개선 연구동향)

  • Kyoungkeun Yoo;Wonhwa Heo;Bumchoong Kim
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.24-36
    • /
    • 2024
  • The lithium-ion battery recycling process has been classified into direct recycling, hydrometallurgical process, and pyrometallurgical process. The commercial process based on the hydrometallurgical process produces black mass through pretreatment processes consisting of dismantling, crushing and grinding, heat treatment, and beneficiation, and then each metal is recovered by hydrometallurgical processes. Since all lithium-ion battery recycling processes under development conducts hydrometallurgical processes such as leaching, after the pretreatment process, to produce precursor raw materials, this article suggests a classification method according to the pretreatment method of the recycling process. The processes contain sulfation roasting, carbothermic reduction roasting, and alloy manufacturing, and the economic feasibility of the lithium-ion battery recycling process can be enhanced using unused by-products in the pretreatment process.

Changes of Bacterial Population during the Decomposition Process of Red Tide Dinoflagellate, Cochiodinium polykrikoides in the Marine Sediment Addition of Yellow Loess (황토첨가 해양퇴적물에서 적조생물 Cochiodinium polykrikoides 분해중 세균군집의 변동)

  • PARK Young-Tae;LEE Won-Jae
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.31 no.6
    • /
    • pp.920-926
    • /
    • 1998
  • To investigate the effects of yellow loess on the microbial community after applying into C. polykrikoides as a red tide centrol method during decomposition process, we conducted this study using microcosm experiments, which consisted of sediment collected from Jinhae and Masan bay. The composition, number of bacteria and respiratory electron transport system activity (ETSA) were analyzed. The number of heterotrophic bacteria examined in the samples of both stations reached maximum value within 12 hrs with $10^7$ cells/dry g, independent with the yellow loess applied. In addition, a differenee in the variation of heterotrophic bacterial composition was not observed by adding the yellow loess, and Vibrio spp. always appeared during the culture periods, However, in day 8 culture, the sulfate reducing bacteria was $3.8\times10^7$ cells/dry g in Masan bay and $5.5\times10^6$ cells/dry g in Jinhae bay samples without yellow loess, and these were 120, 350 fold-and 160, 420 fold-increased when yellow loess was added (1 : 1, 1 : 2). The average ETSA was 6.8$\~$7.6 $\mu$g formazan $h^{-1}$ dry $g^{-1}$ independently with yellow loess in aerobic condition for both samples, but activity was decreased by addition of yellow loess in anaerobic. Thus the addition of yellow loess to marine sediment seems to have an effect to inhibit the anaerobic decomposition process and growth of sulfate reducing bacteria which lead to the bad condition of marine environments.

  • PDF