• Title/Summary/Keyword: 황마섬유 강화 복합재료

Search Result 4, Processing Time 0.018 seconds

Investigation of the Effect of Seaweed Nanofibers in Jute Fiber-reinforced Composites as an Additive (해초 나노섬유가 황마섬유 강화 복합재료의 기계적 물성에 미치는 영향)

  • Kim, Jae-Cheol;Lee, Dong-Woo;Song, Jung-Il
    • Composites Research
    • /
    • v.31 no.6
    • /
    • pp.398-403
    • /
    • 2018
  • Recently, environmental pollution caused by plastic waste, ecosystem disturbance of micro-plastics and human body accumulation are becoming big problems. In order to replace the traditional plastic, eco-friendly resin and natural fiber-based composite materials have been developed, but they have a disadvantage that their mechanical properties are significantly lower than those of synthetic fiber-based composites. In this study, eco - friendly nanofiber was extracted from seaweed and used as an additive in order to improve the mechanical properties of jute fiber-reinforced composites. Through the hand lay-up process, the composites were fabricated, and it was confirmed that the nanofiber was effective in improving the mechanical properties of natural fiber composites through tensile, bending and drop weight impact tests.

Processing and Flexural Properties of Chopped Jute Fiber Reinforced PLA Sandwich Composites (황마 단섬유 강화 폴리유산 샌드위치 복합재의 제작 및 굽힘 특성)

  • Lee, Gyu Hee;Roh, Jeong U;Lee, Woo Il
    • Composites Research
    • /
    • v.27 no.3
    • /
    • pp.96-102
    • /
    • 2014
  • In this study, we fabricated jute fiber reinforced polylactic acid (PLA) composite in the form of sandwich panel structure which includes core foam of chopped jute fiber reinforced PLA and outer skin layer of continuous glass fiber reinforced PLA. Flexural properties of the composite were assessed for different jute fiber weight fractions. Density of the core foam ranged from 0.31 to 0.67 $g/cm^3$ and void content fraction 0.51 to 0.71. The maximum flexural strength was 92.7 MPa at 12.5 wt.% of jute fiber content, and the maximum flexural modulus was 7.58 GPa at 30.0 wt.%. Cost analysis was also conducted. The cost to enhance the flexural strength of the applied structure was estimated to be $0.010USD/m^3/MPa$ for 12.5 wt.% fiber content.

Effect of Coupling Agent and Fiber Loading on Mechanical Behavior of Chopped Jute Fiber Reinforced Polypropylene Composites (황마 단섬유 강화 폴리프로필렌 복합재료의 기계적 거동에 미치는 결합제 및 섬유 Loading의 영향)

  • Rasel, S.M.;Nam, G.B.;Byeon, J.M.;Kim, B.S.;Song, J.I.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.204-210
    • /
    • 2011
  • In this study, Jute fibers reinforced polypropylene (JFRP) composites were manufactured by injection molding technique. In order to improve the affinity and adhesion between fibers and thermoplastic matrices during manufacturing, Maleic anhydride (MA) as a coupling agent have been employed. Untreated and treated surfaces of jute fibers were characterized using SEM and Fourier transform infrared (FTIR). Physical properties like water absorption rate were studied. Tensile and flexural tests were carried out to evaluate the composite mechanical properties. Tensile test and bending test indicated that JFRP composites show higher strength and modulus than pure PP. In addition, strength and modulus were found to be influenced by the variation of MAPP content (1%, 2%, and 3%). Tensile fracture surfaces were examined using scanning electron microscope. It ensures better interfacial adhesion between fibers and matrix by increasing the percentage of MAPP.

Research on the development of the properties of PLA composites for automotive interior parts (자동차 내장재 적용을 위한 PLA 복합재료의 물성개선에 관한 연구)

  • Jung, Jae-Won;Kim, Seong-Ho;Kim, Si-Hwan;Park, Jong-Kyoo;Lee, Woo-Il
    • Composites Research
    • /
    • v.24 no.3
    • /
    • pp.1-5
    • /
    • 2011
  • Since the environmental problems and new stricter regulations are forcing the industries to introduce more ecological materials for their products, biodegradable materials have attracted increasing attention. Among these materials, Polylactic acid(PLA) is a promising candidate for its modulus, strength, chemical resistance. However, PLA could not be used for automobile industries for its low heat resistance and impact strength. In this study natural fibers were (jute fiber was) introduced as reinforcements in order to improve heat resistance and impact strength of PLA. Especially for improving the adhesion between PLA and jute, various surface treatments were tried. With each treatment, we verified that the impact strength of composite was improved. With annealing treatment, we found a remarkable increase of heat resistance of PLA composite.