• Title/Summary/Keyword: 활성 윤곽선

Search Result 13, Processing Time 0.024 seconds

The improved image filter for the purpose of controlling the image energy in the Active Contour Model (활성 윤곽선 모델의 영상 에너지 제어를 위한 개선된 영상 필터)

  • 강중욱;최경민;박용희;전병호;김태균
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.520-522
    • /
    • 1998
  • 활성 윤곽선 모델(Active Contour Model : Snake)을 이용한 윤곽선 추출 방법에서는 물체를 검출하기 위해 잠재적 표면(potential surface) 위에서 지역 최소치를 향하여 다양한 힘을 가함으로써 물체의 윤곽선으로 활성 윤곽선 모델을 움직이게 한다. 활성 윤곽선 모델에서 영상의 관심있는 물체를 검출하기 위해서는 영상의 잠재적 표면 위에서 활성 윤곽선 모델이 지역 최소치를 향하여 활동적으로 움직이도록 다양한 힘을 효과적으로 제어해야 한다. 본 논문에서는 활성 윤곽선 모델이 적합한 지역 최소치를 향하여 적절하게 수렴하도록 활성 윤곽선 모델이 움직이는 잠재적 표면을 변형할 수 있는 영상 필터를 제안한다.

  • PDF

Multiresolution-Based Active Contour Model Using Genetic Algorithm (유전자 알고리즘을 이용한 다해상도 기반의 활성 윤곽선 모델)

  • Lee, Ki-Hwan;Yoo, Hyun-Jung;Kim, Hyun-Jun;Kim, Tae-Yong;Cho, Seok-Je
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2009.11a
    • /
    • pp.385-386
    • /
    • 2009
  • 활성 윤곽선 모델은 스네이크 모델이라고도 하며 영상에서 물체의 경계를 검출하기위한 효과적인 방법으로 사용되고 있다. 본 논문에서는 초기 윤곽선 문제와 효과적인 경계선 검출을 위해 다해상도 기반의 유전자 알고리즘을 이용한 활성 윤곽선 모델을 제안한다. 입력영상의 해상도를 영상 피마리드 기법으로 저해상도로 축소시키고 초기 윤곽선을 설정한다. 설정된 윤곽선상의 연속된 두 좌표를 유전인자로 선택하고, 유전 연산자를 적용하여 물체의 경계를 찾아간다. 경계가 검출된 저해상도 영상을 단계적으로 확대하여, 보간될 영역의 국부적 활성 윤곽선 에너지를 계산하여 최소 에너지를 갖는 위치에 새로운 윤곽선 좌표를 삽입하여 경계를 형성한다. 제안된 방법은 초기 윤곽선의 위치에 상관없이 경계선을 검출했으며, 형태가 복잡한 물체의 경우에도 효과적으로 경계선을 검출하고 계산 복잡도를 감소시켰다.

B-Spline Representation of Active Contours by Dynamic Programming (동적 프로그래밍에 의한 활성 윤곽선의 B-스플라인 표현)

  • Kim, Dong-Geun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.6 no.7
    • /
    • pp.1962-1969
    • /
    • 1999
  • Active contours are deformable energy minimizing curves controlled by internal energy and external energy. The internal energy is constraint to preserve a smooth curve, and the external energy guides the curve towards image features. B-spline representation of active contours can be of great benefits in the segmentation and description whose shape is characterized by its defining polygon or control points. Menet et al proposed B-spline representation of active contours based on dynamic programming. The method is simple and efficient by comparing over finite difference method.

  • PDF

Facial Boundary Detection using an Active Contour Model (활성 윤곽선 모델을 이용한 얼굴 경계선 추출)

  • Chang Jae Sik;Kim Eun Yi;Kim Hang Joon
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.1
    • /
    • pp.79-87
    • /
    • 2005
  • This paper presents an active contour model for extracting accurate facial regions in complex environments. In the model, a contour is represented by a zero level set of level function φ, and evolved via level set partial differential equations. Then, unlike general active contours, skin color information that is represented by 2D Gaussian model is used for evolving and slopping a curve, which allows the proposed method to be robust to noise and varying pose. To assess the effectiveness of the proposed method it was tested with several natural scenes, and the results were compared with those of geodesic active contours. Experimental results demonstrate the superior performance of the proposed method.

ACMs-based Human Shape Extraction and Tracking System for Human Identification (개인 인증을 위한 활성 윤곽선 모델 기반의 사람 외형 추출 및 추적 시스템)

  • Park, Se-Hyun;Kwon, Kyung-Su;Kim, Eun-Yi;Kim, Hang-Joon
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.12 no.5
    • /
    • pp.39-46
    • /
    • 2007
  • Research on human identification in ubiquitous environment has recently attracted a lot of attention. As one of those research, gait recognition is an efficient method of human identification using physical features of a walking person at a distance. In this paper, we present a human shape extraction and tracking for gait recognition using geodesic active contour models(GACMs) combined with mean shift algorithm The active contour models (ACMs) are very effective to deal with the non-rigid object because of its elastic property. However, they have the limitation that their performance is mainly dependent on the initial curve. To overcome this problem, we combine the mean shift algorithm with the traditional GACMs. The main idea is very simple. Before evolving using level set method, the initial curve in each frame is re-localized near the human region and is resized enough to include the targe region. This mechanism allows for reducing the number of iterations and for handling the large object motion. The proposed system is composed of human region detection and human shape tracking modules. In the human region detection module, the silhouette of a walking person is extracted by background subtraction and morphologic operation. Then human shape are correctly obtained by the GACMs with mean shift algorithm. In experimental results, the proposed method show that it is extracted and tracked efficiently accurate shape for gait recognition.

  • PDF

Welding Bead Segmentation Algorithm Using Edge Enhancement and Active Contour (에지 향상과 활성 윤곽선을 이용한 용접 비드 영역화 알고리즘)

  • Mlyahilu, John N.;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.21 no.4
    • /
    • pp.209-215
    • /
    • 2020
  • In this paper, we propose an algorithm for segmenting weld bead images using edge enhancement and active contours. In the proposed method, high-frequency filtering and contrast improvement are performed for edge enhancement, and then, by applying the active contour method, only the weld bead region can be obtained. The proposed algorithm detects an edge through high-frequency filtering and reinforces the detected edge by using contrast enhancement. After the edge information is improved in this way, the weld bead area can be extracted by applying the active contour method. The proposed algorithm shows better performance than the existing methods for segmenting the weld bead in the image. For the objective reliability of the proposed algorithm, it was compared with the existing high pass filtering methods, and it was confirmed that the welding bead segmentation of the proposed method is excellent. The proposed method can be usefully used in evaluating the quality of the weld bead through an additional procedure for the segmented weld bead.

Structural and Behavioral Characteristics of Active Templates (활성 템플릿의 구조와 동작특성)

  • 양애경;최형일
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10c
    • /
    • pp.461-463
    • /
    • 1998
  • 본 논문에서는 활성 템플릿을 이용하여 임의의 형태를 가지는 이동 물체에 대한 정보를 추출하고, 이동 물체를 감지한다. 활성 템플릿을 이용함으로써 기존의 활성 모델에서 추출하지 못했던 이동 물체의 움직임 정보, 즉 전이정보, 회전정보, 크기변화 정보의 추출이 가능하다. 이 방법은 이동물체를 정확하게 감지할 필요없이 활성 템플릿 정합만으로 이동 물체에 대한 정보 추출이 가능하게 한다. 또한 이동 물체에 대한 움직임 정보 추출 후에 활성 템플릿의 윤곽선과 이동 물체 윤곽선간의 차이벡터를 이용하여 템플릿 영역내의 이동 물체 감지가 가능하다. 이것은 기존의 스네이크 알고리즘에 존재하는 지역 최소화 문제에 대한 해결방안이라고 볼 수 있다. 본 논문은 향후 얼굴 표정 인식 및 추적, 사람의 머리 추적, 행위 인식 등에 응용이 가능하다.

  • PDF

An Algorithm of Welding Bead Detection and Evaluation Using and Multiple Filters Geodesic Active Contour (다중필터와 축지적 활성 윤곽선 알고리즘을 이용한 용접 비드 검출 및 판단 알고리즘)

  • Milyahilu, John;Kim, Young-Bong;Lee, Jae Eun;Kim, Jong-Nam
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.22 no.3
    • /
    • pp.141-148
    • /
    • 2021
  • In this paper, we propose an algorithm of welding bead detection and evaluation using geodesic active contour algorithm and high pass filter with image processing technique. The algorithm uses histogram equalization and high pass filter as gaussian filter to improve contrast. The image processing techniques smoothens the welding beads reduce the noise on an image. Then, the algorithm detects the welding bead area by applying the geodesic active contour algorithm and morphological ooperation. It also applies the balloon force that either inflates in, or deflates out the evolving contour for a better segmentation. After that, we propose a method for determining the quality of welding bead using effective length and width of the detected bead. In the experiments, our algorithm achieved the highest recall, precision, F-measure and IOU as 0.9894, 0.9668, 0.9780, and 0.8957 respectively. We compared the proposed algorithm with the conventional algorithms to evaluate the performance of the proposed algorithm. The proposed algorithm achieved better performance compared to the conventional ones with a maximum computational time of 0.6 seconds for segmenting and evaluating one welding bead.

Mobile Robot Control using Hand Shape Recognition (손 모양 인식을 이용한 모바일 로봇제어)

  • Kim, Young-Rae;Kim, Eun-Yi;Chang, Jae-Sik;Park, Se-Hyun
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.34-40
    • /
    • 2008
  • This paper presents a vision based walking robot control system using hand shape recognition. To recognize hand shapes, the accurate hand boundary needs to be tracked in image obtained from moving camera. For this, we use an active contour model-based tracking approach with mean shift which reduces dependency of the active contour model to location of initial curve. The proposed system is composed of four modules: a hand detector, a hand tracker, a hand shape recognizer and a robot controller. The hand detector detects a skin color region, which has a specific shape, as hand in an image. Then, the hand tracking is performed using an active contour model with mean shift. Thereafter the hand shape recognition is performed using Hue moments. To assess the validity of the proposed system we tested the proposed system to a walking robot, RCB-1. The experimental results show the effectiveness of the proposed system.

Object Contour Tracking Using an Improved Snake Algorithm (개선된 스네이크 알고리즘을 이용한 객체 윤곽 추적)

  • Kim, Jin-Yul;Jeong, Jae-Ki
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.48 no.6
    • /
    • pp.105-114
    • /
    • 2011
  • The snake algorithm is widely adopted to track objects by extracting the active contour of the object from background. However, it fails to track the target converging to the background if there exists background whose gradient is greater than that of the pixels on the contour. Also, the contour may shrink when the target moves fast and the snake algorithm misses the boundary of the object in its searching window. To alleviate these problems, we propose an improved algorithm that can track object contour more robustly. Firstly, we propose two external energy functions, the edge energy and the contrast energy. One is designed to give more weight to the gradient on the boundary and the other to reflect the contrast difference between the object and background. Secondly, by computing the motion vector of the contour from the difference of the two consecutive frames, we can move the snake pointers of the previous frame near the region where the object boundary is probable at the current frame. Computer experiments show that the proposed method is more robust to the complicated background than the previously known methods and can track the object with fast movement.