• Title/Summary/Keyword: 활성탄소

Search Result 1,174, Processing Time 0.039 seconds

$CO_2$ Adsorption Behaviors of Activated Carbons Modified by Chelating Groups (킬레이트 관능기가 도입된 활성탄소의 이산화탄소 흡착거동)

  • Jang, Dong-Il;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.396-400
    • /
    • 2010
  • In this work, the adsorption behaviors of activated carbons (ACs) containing chelating functional groups were studied in $CO_2$ removal. The ACs were modified by pyrolysis of peroxide and glycidyl methacrylate graft polymerization in order to induce chelating functional groups, such as diethylenetriamine groups on the AC surfaces. The surface functional groups of the ACs were characterized by scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The textural properties of the ACs were analyzed by $N_2$/77 K isotherms. Adsorption behaviors of the ACs were observed in the amounts of $CO_2$ adsorption. From the results, we found that the chelating functional groups on the AC surfaces led to enhance selectivity and chemisorption on $CO_2$ adsorption in spite of decreasing the physical adsorption properties.

Influence of KOH Activation on Electrochemical Performance of Coal Tar Pitch-based Activated Carbons for Supercapacitor (KOH 활성화가 슈퍼커패시터용 콜타르 피치 활성탄소의 전기화학적 성능에 미치는 영향)

  • Huh, Ji-Hoon;Seo, Min-Kang;Kim, Hak-Yong;Kim, Ick-Jun;Park, Soo-Jin
    • Polymer(Korea)
    • /
    • v.36 no.6
    • /
    • pp.756-760
    • /
    • 2012
  • In this work, the coal tar pitch-based activated carbons (ACs) were prepared by KOH activation for electrode materials of supercapacitor. The effects of activation temperature on electrochemical performance of the ACs were investigated with cyclic voltammogram (CV) measurement. The textural and morphological properties of the ACs were measured by adsorption isotherms and field emission scanning electron microscope (FE-SEM) analyses, respectively. The experimental results indicated that the specific capacitance of the ACs increased with developing the micropore volume by activation temperature. As a result the specific capacitance of the ACs increased, owing to the development of micro pore volume of the ACs.

Adsorption Characteristics of Toluene Gas Using Fluorinated Phenol-based Activated Carbons (불소화 처리된 페놀계 활성탄소를 이용한 톨루엔 가스흡착 특성)

  • Kim, Min-Ji;Jung, Min-Jung;Kim, Min Il;Choi, Suk Soon;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.26 no.5
    • /
    • pp.587-592
    • /
    • 2015
  • Activated carbons (ACs) were treated by fluorination to improve the adsorption property of toluene gas among volatile organic compounds (VOCs). The pore characteristics and surface properties of these activated carbons were evaluated by BET and XPS and the adsorption property and removal efficiency of toluene gas was investigated by gas chromatography. The breakthrough time of fluorinated ACs was increased about 27% compared to that of untreated ACs when the toluene gas of 100 ppm was flowed at a flow rate of $300cm^3/min$. Fluorinated AC of 0.1 g adsorbent totally adsorbed toluene gas in 100 ppm to 100 % during the adsorption time in 19 h. These results can be used as a treatment technology or removal of carcinogenic materials such as toluene.

Electrochemical Performance of Composite Active Materials (Activated Carbon + $LiCoO_2$) Electrode (혼합 활물질 (활성탄소 + $LiCoO_2$) 전극의 전기화학적 특성)

  • Kim, Ick-Jun;Jeon, Min-Jae;Yang, Sun-He;Moon, Seoung-In;Kim, Hyun-Soo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.497-497
    • /
    • 2007
  • 활성탄소를 양쪽 전극에 사용하는 전기이중층 커패시터는 고출력 특성과 반영구적인 cycle 수명인 장점을 가지고 있는 반면, 단위 중랑 또는 부피 당 용량이 작아 메모리 백업용 보조전원으로서의 활용에 그치고 있다. 이를 보완하기 위하여 최근에는 앙쪽의 전극에 충방전 메카니즘을 달리하는 비대칭 전극 설계기술을 기반으로 하는 하이브리드 커패시터가 개발되었고, 에너지밀도로서는 유기계 전해액에서 약 15-20 Wh/kg를 가지는 것으로 보고되고 있다. 본 연구메서는 양극의 활성탄소에 비용량이 상대적으로 큰 LiCo02 분말을 혼합한 하이브리드 전극의 제조 및 전기화학적 특성을 조사하였다. 이때 $LiCoO_2$ 분말의 혼합 종량비의 영향에 의한 전극 부피 당 용량(mAh/cc)의 변화와 $LiCoO_2$ 분말의 입자 크기에 의한 하이브리드 전극의 출력 특성을 조사하였다. $LiCoO_2$ 분말은 불밀을 이용하여 입자크기를 조절하였고, 각각의 입자크기를 가지는 LiCoO2 분말을 활성탄소와 함께 혼합하여 혼합 활물질 : Carbon black : PTFE의 중량비가 90 : 5 : 5가 되도록 sheet 전극을 제조하였다. 제조한 전극을 양극에, Li foil을 음극에, 전해액을 LiPF6 in EC DMC를 사용하여 코인셀을 제조하고 전기화학적 특성은 MACCOR 충방전기를, AC 저항은 AC impedance를 각각 사용하여 평가하였다. 활성탄소에 $LiCoO_2$ 분말의 첨가 중량비가 증가할수록 전극 부피 당 용량은 증가하였으나, 원료 상태의 $LiCoO_2$ 분말의 첨가에서는 코인셀의 전극 저항은 첨가 중량에 따라 단순 증가하였다. 그러나 미세 $LiCoO_2$ 분말을 첨가할 경우, 20%의 첨가에서 전극 저항은 활성탄소 만을 사용한 전극과 동등한 전극저항을 나타내고 충방전 cycle 특성도 개선되는 것을 확인하였다.

  • PDF

Manufacturing and Application of Activated Carbon and Carbon Molecular Sieves in Gas Adsorption and Separation Processes (가스 흡착 및 분리공정용 활성탄소와 탄소분자체의 제조 및 응용)

  • Jeong, Seo Gyeong;Ha, Seongmin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.488-495
    • /
    • 2022
  • Activated carbon (AC) and carbon molecular sieve (CMS) have attracted attention as porous materials for recovery and separation of greenhouse gases. The carbon molecular sieve having uniform pores is used for collecting and separating gases because it may selectively adsorb a specific gas. The size and uniformity of pores determine the performance of the CMS, and chemical vapor deposition (CVD) is widely used to coat the surface with a predetermined thickness in order to control the CMS's micropores. This CVD method can be used to control the size of pores in CMS manufacturing, but it must be optimized because of its various experimental variables. Therefore, in order to produce AC and CMS for gas adsorption and separation, this review focuses on various activation processes and pore control technologies by CVD and surface treatment.

Preparation and Electrochemical Characterization of Activated Carbon Electrode by Amino-fluorination (아미노불소화 반응에 의한 활성탄소전극 제조 및 전기화학적 특성)

  • Lim, Jae Won;Jeong, Euigyung;Jung, Min Jung;Lee, Sang Ick;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.22 no.4
    • /
    • pp.405-410
    • /
    • 2011
  • High-performance of an electric double layer capacitance (EDLC) electrode was prepared by the amino-fluorination of activated carbon by using $NF_3$ gas. The pore structure and surface chemistry were investigated based on the specific capacitance of EDLC. The amino-fluorination of activated carbon introduced functional groups of nitrogen and fluorine which are beneficial for the specific capacitance of EDLC without the change of pore structures. The E-NF100AC electrode, which has nitrogen and fluorine functional groups less than 1 at%, showed the highly improved specific capacitance of 528 (${\pm}9$) F/g at 2 mV/s showing 122% improved value when comparing with that of non-functionalized E-RAC electrodes. Whereas, the E-NF200AC electrode, which has nitrogen and fluorine functional groups over 1 at%, showed the decreased specific capacitance because of perfluorinated introduction. So, it is concluded that the proper contents of nitrogen and fluorine groups improved the specific capacitance of EDLC.

Removal Properties of Chromium by 3 Different Carbon Adsorbents (3종의 탄소계 흡착제를 이용한 크롬 제거 특성)

  • Jung, Yong-Jun;Kim, Tae-Kyung
    • Journal of Wetlands Research
    • /
    • v.19 no.2
    • /
    • pp.246-251
    • /
    • 2017
  • This study was carried out to evaluate the possibility of Chromium removal by 3 different kinds of adsorbents, where activated carbon(AC), carbon nanotube(CNT) and layered double hydroxides(LDHs) were employed. The highest surface area was shown in AC and pore volume was in CNT which were $1028.1m^2{\cdot}g^{-1}$ and $0.829cm^2{\cdot}g^{-1}$, respectively. AC and CNT are composed of more than 99% carbon. AC has shown the possibility of chromium removal more than 80.2% under the acidic pH condition.

The effects of carbon sources on antitumor and anticomplementary activities of Ganoderan extracted from the mycelium of Ganoderma lucidum IY009 (Ganoderma lucidum IY009 균사체로부터 추출된 ganoderan의 항암 및 항보체 활성에 미치는 탄소원의 영향)

  • Han, Man-Deuk;Lee, June-Woo;Jeong, Hoon;Chung, Sung-Kyun;Lee, Seung-Yong;Yoon, Kyung-Ha
    • The Korean Journal of Mycology
    • /
    • v.23 no.3 s.74
    • /
    • pp.209-225
    • /
    • 1995
  • Ganoderan, antitumor ${\beta}-glucan$ from Ganoderma lucidum was extracted from the mycelium of G.lucidum IY009 which was cultured in various carbon sources. The mycelium was shown to be capable of utilizing various carbon sources, e.g., soluble starch, fructose and glucose, and differs in morphology on carbon sources. In radioisotope assay, about $5.2{\sim}16%$ of glucose was to be incorporated in ganoderan of the mycelium. The monosugars of these ganoderan were mainly consisted of glucose, mannose, galactose. The galactose was not good carbon source for growing the mycelium but the best carbon source for producing the potentialized-ganoderan on the antitumor and anticomplementary activity. The tumor inhibition ratio of ganoderan-GAL, obtained from galactose medium, was 83.6% at the dose of 20 mg/kg/day. This crude polysaccaride was composed of five monosaccharide and the protein contained 16 amino acids. Also, ganoderan-GAL increased the anticomplementary activity than that obtained from any other media. This fact suggests that the structural differences of ganoderan influence the antitumor and anticomplementary activity.

  • PDF

아크릴 폐직물을 이용하여 제조한 활성탄소의 기공구조 발현 과정

  • 유소영;윤창훈;박연흠;박종래
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 1998.10a
    • /
    • pp.489-492
    • /
    • 1998
  • 흡착 기능을 가지는 소재로서 오래 전부터 사용되어 온 활성탄소는 최근 환경에 대한 관심이 고조되면서 새삼 주목의 대상이 되고 있는 소재이다. 제품의 형태는 사용 목적에 따라 다르지만 보편화 된 것은 주로 입상 및 분말 상이다. 하지만 이러한 형태는 비표면적이 작고 기공분포가 넓은 단점 때문에 미세 오염물의 제거에는 부적합한 면이 있다[1]. (중략)

  • PDF

Cesium Adsorption Properties of Activated Carbon with Oxygen Functional Groups Introduced by Ozonation Treatment (오존 처리에 의해 산소 작용기가 도입된 활성탄소의 세슘 흡착 특성)

  • Eunseon Chae;Chung Gi Min;Chaehun Lim;Young-Seak Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.23-28
    • /
    • 2024
  • Cesium is a potential toxic contaminant due to its high solubility, which allows it to easily penetrate the human body and potentially induce cancer or DNA mutations. In this study, oxygen functional groups were introduced on activated carbons (ACs) by ozone treatment to enhance the cesium adsorption capacity. As the ozone treatment time increased, the oxygen content on the ACs surface increased. Subsequently, the electrostatic interaction between ACs and cesium enhanced, resulting in higher cesium ion adsorption efficiency across all samples. In particular, the sample treated with ozone for 7 minutes at an internal ozone concentration of 50000 ppm had roughly 12% greater oxygen functional group content and the highest cesium removal effectiveness (97.6%). Meanwhile, samples treated for 5 minutes showed a 0.3% cesium removal rate difference compared to those treated for 7 minutes, which was caused by the surface chemical similarity of the two samples due to the reactive characteristics of ozone gas. However, the cesium adsorption performance of ozonated activated carbon seems to be mainly influenced by the amount of oxygen functional groups introduced to the surface, although the specific surface area and pore structure of the activated carbon are also important.