• Title/Summary/Keyword: 활성창

Search Result 154, Processing Time 0.02 seconds

Study on the Effect of NH3-Selective Catalytic Reduction Efficiency according to Sb Calcination Temperature in V/Sb/TiO2 Catalyst (V/Sb/TiO2 촉매에서 Sb 소성온도에 따른 NH3-SCR 효율 영향 연구)

  • Choi, Gyeong Ryun;Yeo, Jong Hyeon;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.646-652
    • /
    • 2020
  • In this study, an NH3-selective catalytic reduction (SCR) experiment was performed to control NOx in the temperature range of 200~500 ℃. The reaction activity experiment was conducted by varying the firing temperature of Sb/TiO2 when using V/Sb/TiO2 composite as a catalyst. As a result, when the sintering temperature of Sb/TiO2 was 600 ℃, the efficiency was the best, and it was confirmed that the NOx conversion rate was close to 80% at the reaction temperature of 250 ℃. H2-temperature programmed reduction (TPR), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS) analyses were employed to derive the cause of the activity enhancement when prepared at different firing temperatures as described above. As a result, when the sintering temperature of Sb/TiO2, which showed an excellent activity, was prepared at 600 ℃, it was confirmed that VSbO4 was generated. This indicates that the non-stoichiometric species of V increased, resulting in the excellent NOx conversion rate of V/Sb/TiO2.

Anticariogenic and Antioxidant Activities from Medicinal Herbs (생약재의 항충치 및 항산화효과 탐색)

  • Park, Yun-Mi;Kim, Seon-Jae;Jo, Kwang-Ho;Yang, En-Jung;Jung, Soon-Teck
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.3
    • /
    • pp.284-293
    • /
    • 2006
  • We have tested 41 herbal medicines to search for a natural substance with antimicrobial activity against Streptococcus mutans and five types of oral bacteria. We have also investigated antioxidative activity of these herbal medicines. Antimicrobial activity against Streptococcus mutans and five types of oral bacteria was analyzed using ethanol extracts of herbal medicines. Extracts from Illicium verum and Amomum xanthioides showed 98% inhibitory activity against Sterptococcus mutans. The effect of Thuja orientalis on S-1 and Thuja orientalis and Amomum xanthioides on S-2 were 95% and 94%, respectively. Nelumbo nucifera was 94% effective on S-5. The inhibitory activities of the herbal medicines against glucosyltransferase (GTase) were determined using purified from Streptococcus mutans and five types of oral bacteria. Extract from Illicium verum and Amomum xanthioides showed 94% effectiveness on Streptococcus mutans. Amomum xanthioides showed 95% effectiveness on S-1 and Thuja orientalis showed 96% effectiveness on S-5. In antioxidant activities of the herbal medicines, extract from Thuja orientalis showed the highest level of 81.08% DPPH radical scavenging activity and Illicium velum extract also showed high antioxidative activity of 80.45%. Thuja orientalis had a large amount of phenolic compound with $115.24\;{\mu}g/mL$ among the herbal medicines.

Anti-proliferative Activities of Solvent Fractions of Lees Extracts in Human Colorectal HCT116 Cells (대장암 세포주에서 주박 추출물의 유기용매 분획물의 항성장 활성)

  • Kang, Hyung-Taek;Lee, Seung Hoon;Kim, Soon Young;Kim, Mi-Sun;Shin, Woo-Chang;Sohn, Ho-Yong;Kim, Jong-Sik
    • Journal of Life Science
    • /
    • v.24 no.9
    • /
    • pp.967-972
    • /
    • 2014
  • In the present study, we prepared eighty-five different kinds of lees extracts and their solvent fractions and investigated their anti-proliferative activities against human colorectal cancer HCT116 cells. HCT116 cells were treated with eighty-five solvent fractions of lees extracts and then cell viability was measured using MTS assay. Among the treated solvent fractions, three solvent fractions (KSD-E1-3, KSD-E2-3, and KSD-E4-3) were selected based on cell viability assay. In addition, we performed an oligo DNA microarray analysis to analyze the gene expression changes by treatment of KSD-E1-3 in HCT116 cells. Among the upregulated genes, we selected 4 genes (NAG-1, ATF3, p21, and DDIT3) and performed RT-PCR using gene-specific primers. Among the treated solvent fractions, KSD-E1-3 dramatically induced the expressions of the four selected genes. In addition, we investigated whether the upregulations of those genes were dependent on the transcription factor p53's presence using p53 null HCT116 cells. The results indicate that the upregulations of NAG-1, ATF3, and DDIT3 are not dependent on the p53 presence, whereas p21 is dependent on the p53 presence. These findings may help to understand the molecular mechanisms of the anti-proliferative activity mediated by rice wine lees in human colorectal cancer cells.

Change of Aroma Compounds during Corn Vinegar Ripening (숙성에 의한 옥수수 식초의 향기 성분 변화)

  • Shin, In-Ung;Park, Eun-Hee;Choi, Yeong-Hwan;Ryu, Su-Jin;Shin, Woo-Chang;Kim, Myoung-Dong
    • Microbiology and Biotechnology Letters
    • /
    • v.48 no.1
    • /
    • pp.90-97
    • /
    • 2020
  • Vinegar was prepared from corn produced in Gangwon province and changes to the major aroma components were investigated for acetic acid fermentation and ripening. The most prevalent volatile component in corn alcohol was determined to be 2-phenylethanol (accounting for 27% of total aroma components); the levels of 2-phenylethanol decreased to 15% after acetic acid fermentation. Principal component analysis of volatile compounds revealed that corn vinegar was distinguishable from corn alcohol. The highest content of total volatile components (50%) was acetic acid, followed by 2-phenylethanol and diethyl succinate. Ethyl phenylacetate and diethyl succinate had the highest odor activity value, and might contribute most profoundly to the aroma of corn vinegar.

A Study of Simultaneous Reaction for NOx, Soot and Thermal Shock according to Pt Catalyst's Supports (담체에 따른 Pt 촉매의 NOx, soot 동시 반응특성과 열충격에 관한 연구)

  • Kim, Sung Su;Park, Kwang Hee;Bae, Se Hyun;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.20 no.4
    • /
    • pp.437-442
    • /
    • 2009
  • In this work, thermal shock and simultaneous removal reaction for NOx, soot over Pt catalysts using $TiO_2$, $Al_2O_3$ as support were studied. The catalytic reaction test for NOx and soot were also performed independently and simultaneously, as a result, it showed different NOx removal efficiency and soot oxidation rate according to support and phase, and the onset temperature of soot oxidation has correlation to NOx removal efficiency for the catalyst. The onset temperature of soot oxidation shifted to lower temperature by generated $NO_2$ at the simultaneous reaction for NOx and soot. Also Pt/$TiO_2$ catalyst is more affected than Pt/$Al_2O_3$ on NOx removal efficiency caused by thermal shock while Pt sintering effect induced to reduce the performance on soot oxidation rate for all catalysts.

Analysis of Functional Components in Roasted Okra (Abelmoschus esculentus L. Moench) Seeds (볶음 오크라 종자의 주요 기능성분 분석)

  • Ahn, Yul Kyun;Jang, Ki Chang;Kim, Shun Hwan
    • Journal of Bio-Environment Control
    • /
    • v.22 no.1
    • /
    • pp.61-64
    • /
    • 2013
  • This study was conducted to investigate the general characteristics of raw okra seeds and the functional components of roasted okra seeds. The number of okra seed per pod was 78 in 'Greensod' and 88 in 'Beny'. The weight of okra seed per pod of 'Greensod' and 'Beny' were 4.4 g and 6.3 g, respectively. Free amino acid contents of the stir-fry and fresh okra seeds were measured as $2.69mg{\cdot}g^{-1}$ and $0.31mg{\cdot}g^{-1}$. Total polyphenolic compound content of the stirfry okra seeds was estimated as $12.61mg\;CGA{\cdot}g^{-1}$, compared to $2.54mg\;CGA{\cdot}g^{-1}$ fresh okra seeds, Thus, free amino acid and total polyphenolic compound contents in the stir-fry okra seeds were higher than fresh one, Antioxidant activities, such as DPPH and ABTS radical scavenging in the stir-fry okra seeds was the higher than fresh okra seeds.

A Numerical Study of Channel Shape and Mach Number Effects on Transonic Combustion (채널형상과 마하수가 천음속 연소에 미치는 영향에 대한 수치해석적 연구)

  • Lee, Jang-Chang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.11
    • /
    • pp.65-73
    • /
    • 2005
  • The compressible flow of reactive fluid is investigated by using the transonic small-disturbance (TSD) model and the one-step first-order Arrhenuis chemical reaction. The fluid flow is restricted to dilute premixed reactions with small heat release. The effects of channel shape and Mach number on transonic combustion are studied by numerical analysis. The results show that the channel divergence increases the chemical reaction within the given channel length whereas the channel convergence inhibits the chemical reaction near the outlet and that increasing the inlet flow Mach number at a fixed reaction rate causes the flow acceleration in a diverging channel and the appearance of weak shock waves which do not show in the inert flow case. It also helps to increase the pressure and temperature near the diverging channel outlet and to consume the reactant within the given channel length.

Selective Catalytic Reduction of NO on Manganese Sulfates (망간황화물을 이용한 NO의 선택적 촉매 환원)

  • Jeong, Soon Kwan;Park, Tae Sung;Hong, Sung Chang
    • Korean Chemical Engineering Research
    • /
    • v.46 no.3
    • /
    • pp.473-478
    • /
    • 2008
  • In this experimental, selective catalytic reduction (SCR) of NO with NH3 over manganese sulfates and manganese sulfates was investigated with catalytic activity, kinetics, temperature programmed reduction (TPR) and TGA. Manganese oxides showed high catalytic activity for SCR at temperature below $200^{\circ}C$. In case of manganese sulfates, the temperature at which SCR of nitric oxide appears shifted to high temperature with sulfation degree, and the maximum catalytic efficiency decreased. The temperature of the onset of reduction for manganese oxides and manganese sulfates is about $160^{\circ}C$ and over $280^{\circ}C$, respectively. We suggest that the onset of reduction in TPR correlates with the onset of SCR activity. Because the pre-exponential factor of manganese sulfates is lower as 1/1000 times than that of other catalysts, catalytic activity of manganese sulfates for NO showed low. The reduction temperature of natural manganese ore which consists of various metal oxides showed lower than that of pure manganese oxides.

The effect of moisture on SCR reaction of NMO (Natural Manganese Ore) (천연망간광석 SCR 반응에서 수분의 영향)

  • Kim, Sungsu;Hong, Sungchang
    • Applied Chemistry for Engineering
    • /
    • v.18 no.4
    • /
    • pp.350-355
    • /
    • 2007
  • The effect of moisture in flue gas on SCR reaction of NMO (Natural Manganese Ore) was studied. The experiments were performed over NMO with NO, $NH_3$ at independent condition or simultaneous condition. $NH_3$ can be oxidized at low temperature by the lattice oxygen in NMO catalyst. The concentration of NO and $NO_2$ by $NH_3$ oxidation with moisture is higher above $300^{\circ}C$ than that without moisture. Moisture would competitively adsorb with NO and $NH_3$ on NMO catalyst. It caused poor NOx conversion to compete against $H_2O$. Besides the NOx conversion efficiency was reduced at below $250^{\circ}C$ because of the dipped $H_2O$ competitively adsorbed $NH_3$. The reactivity of NMO varied with the calcination temperature and the optimum calcination temperature was $400^{\circ}C$ regardless $H_2O$.

The Effect of Oxygen in Low Temperature SCR over Mn/$TiO_2$ Catalyst (Mn/$TiO_2$ 촉매를 이용한 저온 SCR 반응에서 산소의 영향)

  • Lee, Sang Moon;Choi, Hyun Jin;Hong, Sung Chang
    • Applied Chemistry for Engineering
    • /
    • v.23 no.1
    • /
    • pp.119-123
    • /
    • 2012
  • This study presents the effect of oxygen on the $NH_3$ selective catalytic reduction (SCR) by Mn/$TiO_2$ catalyst. The lattice oxygen of catalysts is participate in the low temperature SCR, and the gaseous oxygen directly takes part in the rexoidtion of reduced catalyst. These redox properties of oxygen an play important role in SCR activity and the available capability of lattice oxygen depends on the manganese oxidation state of the catalyst surface. $MnO_2$ species has a higher redox property than that of $Mn_2O_3$ species on deposited $TiO_2$ surface and these manganese oxide states strongly depend on the $TiO_2$ surface area.