• Title/Summary/Keyword: 활성세균수

Search Result 799, Processing Time 0.033 seconds

Antifungal Activity of Lactobacillus plantarum Isolated from Kimchi (김치로부터 항진균 활성 Lactobacillus plantarum의 분리 및 특성 규명)

  • Yang, Eun-Ju;Chang, Hae-Choon
    • Microbiology and Biotechnology Letters
    • /
    • v.36 no.4
    • /
    • pp.276-284
    • /
    • 2008
  • A lactic acid bacterium having antifungal activity was isolated from kimchi. It was identified as Lactobacillus plantarum based on its morphological and biochemical properties, and 16S rRNA sequence, and designated as Lb. plantarum AF1. This isolate inhibited the growth of Aspergillus flavus ATCC 22546, A. fumigatus ATCC 96918, A. petrakii PF-1, A. ochraceus PF-2, A. nidulans PF-3, Epicoccum nigrum KF-1, and Cladosporium gossypiicola KF-2 under a dual culture overlay assay. Also, the antimicrobial activity was found to be active against various species of Gram-positive and Gram-negative bacteria. The antifungal activity was found to be stable after heat ($121^{\circ}C$, 15 min) and proteolytic enzyme treatment, but it was unstable over pH 5.0. The antifungal compound(s) was estimated to have a low molecular mass (below 3,000 Da).

Distribution of Heterotrophic Bacterial Flora in Soil on the King George Island (Antarctica) and Their Enzyme Activities (남극 King Geroge Island 토양의 종속영양 세균 분포상과 효소 활성도)

  • 김상진;이승복
    • Korean Journal of Microbiology
    • /
    • v.28 no.3
    • /
    • pp.199-203
    • /
    • 1990
  • To study distribution of bacterial flora and their biochemical characteristics in the Antarctic soilecosystem, these experiments were performed during the austral summer(Feb., 1989) on the King George Island, Antarctica. The numbers of heterotrophic bacterial colonies and extracellular enzyme actibities were estimated from the Antarctic terrestrial soils which were sampled from 17 different locations near Sejong station (Korea) and Teniente Jubany station (Argentina) on the King George Island. The numbers of heterotrophic bacterial colonies were extremely variable with sampling sites and incubation temperatures. Arithmetric average numbers were $2.5\times 10^{4}$, $2.7\times 10^{7}$ , $6.9\times 10^{5}$ CFU/$cm^{3}$ soil at the incubation temperature of $37^{\circ}C$, $25^{\circ}C$ and $4^{\circ}C$, respectively. The activities of extracellular $\alpha$-glucosidase, $\beta$-glucosidase and N-acetyl-$\beta$-glucosaminidase were shown as similar mean percentage in the colonies obtained at different temperatures. Mean value of protease activities, however, was remarkably higher (92%) in the colonies grown at $4^{\circ}C$,.

  • PDF

Isolation of Bacillus sp. SW29-2 and Its Antifungal Activity against Colletotrichum coccodes (Bacillus sp. SW29-2의 분리 및 Colletotrichum coccodes에 대한 항진균 활성)

  • Han, Yeong-Hwan
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.688-693
    • /
    • 2017
  • Antifungal bacterium against Colletotrichum coccodes causing black dot disease of potatoes and anthracnose of tomatoes was isolated from sewage sludge. The isolate showed a 99% sequence homology of partial 16S rRNA of Bacillus methylotrophicus CBMB205 and Bacillus amyloliquefaciens subsp. plantarum FZB42. The isolate was identified as Bacillus sp. SW29-2, using the neighbor-joining phylogenetic tree, BlastN sequence analysis, and morphological and cultural characteristics. Bacillus sp. SW29-2 is an aerobic, Gram-positive, endospore-forming bacterium, of which the morphological and physiological characteristics were the same as those of type strain B. lichniformis CBMB205, except for the cell growth of over 4% NaCl. The cell growth of the temperature and the initial pH of the medium was shown at $18-47^{\circ}C$ (opt. ca. $38^{\circ}C$) and 3-9 (opt. ca. 6.0), respectively. The inhibition size (diameter) of Bacillus sp. SW29-2 against four strains of C. coccodes ranged from 23 to 29 mm. Also, the isolate showed antifungal activity against penicillium rot-causing Penicillium expansum in apples. Thus far, any report on the antifungal activity of Baciilus spp. against C. coccodes has not been found. These results suggest that the Bacillus sp. SW29-2 isolate could be used as a possible biocontrol agent against C. coccodes, and further applied to other plant pathogenic fungi.

Effect of Pine Needle and Green Tea Extracts on the Survival of Pathogenic Bacteria (솔잎과 녹차 추출물이 식중독세균의 생존에 미치는 영향)

  • 박찬성
    • Korean journal of food and cookery science
    • /
    • v.16 no.1
    • /
    • pp.40-46
    • /
    • 2000
  • The sensitivity of various pathogenic bacteria(Listeria monocytogenes, Staphylococcus aureus, Aeromonas hydrophila, Escherichia coli O157:H7 and Salmonella typhimurium) to the pine needle and green tea extracts was tested. Water extract of pine needle(PNW), 70% ethanol extract of pine needle(PNE), water extract of green tea(GTW) and 70% ethanol extract of green tea(GTE) were prepared for the test of antibacterial activty. Tryptic soy broth(TSB) containing 0∼2%(w/v) of pine needle and green tea extracts were inoculated with 10$\^$5/∼10$\^$6/ cells/ml of each bacterium and incubated at 35$\^{C}$ for 24 hours. The standard plate count method was used to measure the inhibitory effect of the extracts. Minimum inhibitory concentration(MIC) and minimum bactericidal concentration(MBC) were derived from the survival curves of pathogenic bacteria. Antibacterial activities of the pine needle and green tea extracts were compared with that of sodium benzoate, a preservative, by clear zone test. L. monocytogenes, S. aureus and A. hydrophila were completely inhibited at 0.4∼1.6% level while E. coli and S. typhimurium were very resistant to the pine needle extracts. Green tea extracts completely inhibited all strains tested at 0.2∼1.0% level and bactercidal to all strains except L. monocytogenes at 0.5∼2.0% level. Antibacterial activities of pine needle and green tea extracts were stronger than that of sodium benzoate. The order of antibacterial activities of pine needle and green tea extracts to the pathogenic bacteria was GTE > GTW > PNE > PNW. This result suggests that green tea extracts can be used as an effective natural antibacterial agent in food.

  • PDF

Isolation and Degradation Activity of a TBTCl (Tributyltin Chloride) Resistant Bacteriain Gwangyang Bay (광양만에서 TBTCl (Tributyltin Chloride) 내성세균의 분리 및 분해활성)

  • Jeong, Seong-Yun;Son, Hong-Joo;Jeoung, Nam-Ho
    • Korean Journal of Environmental Agriculture
    • /
    • v.30 no.4
    • /
    • pp.424-431
    • /
    • 2011
  • BACKGROUND: Tributyltin chloride is among the most toxic compounds known for aquatic ecosystems. Microorganisms are responsible for removal of TBTCl. Nevertheless, only a limited number of marine bacteria were investigated for biodegradation of TBTCl in Korea. METHODS AND RESULTS: The number of TBTCl resistant bacteria ranged from $2.5{\times}10^3$ to $3.8{\times}10^3$ cfu/mL in the seawater, and ranged from $3.2{\times}10^5$ to $9.1{\times}10^5$ cfu/g in the surface sediment, respectively. The morphological, physiological, and biochemical characteristics of TBTCl resistant bacteria were investigated by API 20NE and other tests. The most abundant species of TBTCl resistant bacteria were Vibrio spp. (19.2%), Bacillus spp. (16.2%), Aeromonas spp. (15.2%), and Pseudomonas spp. (13.1%), etc. Eleven TBTCl resistant isolates also had a resistance to heavy metals (Cd, Cu, Hg, and Zn). Among them, isolate T7 showing the strong TBTCl-resistance was selected. This isolate was identified as the genus Pantoea by 16S rRNA gene sequencing and designated as Pantoea sp. T7. In addition, this bacterium was cultivated up to the growth of 50.7% after 60 hrs at TBTCl concentration of $500{\mu}M$. TBTCl-degrading activity of Pantoea sp. T7 was measured by GC-FPD analysis. As a result of biological TBTCl-degradation at TBTCl concentration of $100{\mu}M$, TBTCl-removal efficiency of Pantoeasp. T7 was 62.7% after 40 hrs. CONCLUSION(S): These results suggest that Pantoea sp. T7 is potentially useful for the bioremediation of TBT contamination.

Comparative Analysis of Immunosuppressive Metabolites Synthesized by an Entomopathogenic Bacterium, Photorhabdus temperata ssp. temperata, to Select Economic Bacterial Culture Media (곤충병원세균(Photorhabdus temperata ssp. temperata) 유래 곤충 면역 억제물질 생성 비교 연구를 통한 저렴한 세균 배지 선발)

  • Seo, Sam-Yeol;Jang, Ho-Jin;Kim, Kun-Woo;Kim, Yong-Gyun
    • Korean journal of applied entomology
    • /
    • v.49 no.4
    • /
    • pp.409-416
    • /
    • 2010
  • An entomopathogenic bacterium, Photorhabdus temperata ssp. temperata (Ptt), suppresses insect immune responses and facilitates its symbiotic nematode development in target insects. The immunosuppressive activity of Ptt enhances pathogenicity of various microbial pesticides including Bacillus thuringiensis (Bt). This study was performed to select a cheap and efficient bacterial culture medium for large scale culturing of the bacteria. Relatively cheap industrial bacterial culture media (MY and M2) were compared to two research media, Luria-Bertani (LB) and tryptic soy broth (TSB). In all tested media, a constant initial population of Ptt multiplied and reached a stationary phase at 48 h. However, more bacterial colony densities were detected in LB and TSB at the stationary phase compared to two industrial media. All bacterial culture broth gave significant synergism to Bt pathogenicity against third instars of the diamondback moth, Plutella xylostella. Production of bacterial metabolites extracted by either hexane or ethyl acetate did not show any significant difference in total mass among four culture media. Reverse phase HPLC separated the four bacterial metabolites, which were not much different in quantities among four bacterial culture broths. This study suggests that two industrial bacterial culture media can be used to economically culture Ptt in a large scale.

The Anti-bacterial Activity of Eco-friendly Farming Material based on Chinese Nut-gall Extraction on Acidovorax citrulli (오배자 추출물 유래 친환경제제의 세균성과실썩음병균에 대한 항세균활성)

  • Seo, Tae-Jin;Yang, Soo-Jeong;Lee, Bong-Choon;Kim, Kang-Min;Lee, Kui-Jae;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.571-582
    • /
    • 2016
  • Bacterial fruit blotch (BFB) is one of most important diseases in Cucurbitaceae due to infection of Acidovorax citrulli, causing huge economic losses damage worldwide. This seedborn disease spread rapidly at period of high temperature and humidity. The eco-friendly farming is getting popular. So far there was no effective agent to control BFB in eco-friendly farming. Therefore, effect of the material based on chinese nut-gall extract with antibacterial activity against BFB to was tested against A. citrulli. Different hosts showed various symptoms of BFB. Liquid formulation among exhibited most effective anti-bacterial activity on A. citrulli. Pot experiment in greenhouse showed the potential as an control agent of BFB in cucurbits. The treatment of material based on chinese nut-gall extract showed the positive effect on survival of the watermelon seedling and on the length of the cucumber seedling treated with A. citrulli. We cautiously conclude that the material based on chinese nut-gall extract used in this study may be good agents against major diseases of cucurbits in the future even though it is require to be tested with more study on field test.

Antimicrobial Effect of Citrus unshiu Markovich Extracts on Food-Borne Pathogens (청피 추출물이 식중독 유발 미생물의 증식에 미치는 영향)

  • Bae Ji-hyun;Park Hyo-eun;Bae Hee-jung
    • Korean journal of food and cookery science
    • /
    • v.21 no.1 s.85
    • /
    • pp.40-46
    • /
    • 2005
  • This study was performed to investigate the antimicrobial effects of the Citrus unshiu Markovich extracts against food-borne pathogens. First, the Citrus unshiu Markovich was extracted with methanol at room temperature, and fractionation of the methanol extracts from Citrus unshiu Markovich was carried out by using petroleum ether, chloroform, ethyl acetate, and methanol. The antimicrobial activity of the Citrus unshiu Markovich extracts was determined using the paper disc method against food-borne pathogens and food spoilage bacteria. The ethyl acetate extracts of Citrus unshiu Markovich showed the highest antimicrobial activity against Bacillus cereus and Shigella sonnei. A synergistic effect was found in combined extracts of Citrus unshiu Markovich and Hedyotis diffusa Willd as compared to each extract alone. Finally, the growth inhibition curve was determined using ethyl acetate extracts of Citrus unshiu Markovich against Bacillus cereus and Shigella sonnei. The ethyl acetate extract of Citrus unshiu Markovich showed strong antimicrobial activity against Bacillus cereus at the concentration of 5,000 ppm. The 5,000 ppm of ethyl acetate extract from Citrus unshiu Markovich retarded the growth of Bacillus cereus more than 24 hours and Shigella sonnei up to 24 hours. The ethyl acetate extracts of Citrus unshiu Markovich have shown an antimicrobial effect against Bacillus cereus and Shigella sonnei.

Review on hazardous microcystins originating from harmful cyanobacteria and corresponding eliminating methods (유해 남세균 유래 마이크로시스틴의 위해성과 제거 방안 고찰)

  • Sok Kim;Yoon-E Choi
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.4
    • /
    • pp.370-385
    • /
    • 2023
  • Cyanobacterial harmful algal blooms (Cyano-HABs) are an international environmental problem that negatively affects the ecosystem as well as the safety of water resources by discharging cyanotoxins. In particular, the discharge of microcystins (MCs), a highly toxic substance, has been studied most actively, and various water treatment methods have been proposed for this purpose. In this paper, we reviewed adsorption technology, which is recognized as the most feasible, economical, and efficient method among suggested treatment methods for removing MCs. Activated carbons (AC) are widely used adsorbents for MCs removal, and excellent MCs adsorption performance has been reported. Research on alternative adsorption materials for AC such as biochar and biosorbents has been conducted, however, their performance was lower compared to activated carbon. The impacts of adsorbent properties(characteristics of pore surface chemistry) and environmental factors (solution pH, temperature, natural organic matter, and ionic strength) on the MCs adsorption performance were also discussed. In addition, toward effective control of MCs, the possibility of the direct removal of harmful cyanobacteria as well as the removal of dissolved MCs using adsorption strategy was examined. However, to fully utilize the adsorption for the removal of MCs, the application and optimization under actual environmental conditions are still required, thereby meeting the environmental and economic standards. From this study, crucial insights could be provided for the development and selection of effective adsorbent and subsequent adsorption processes for the removal of MCs from water resources.

Acinetobacter Isolates Growing with Carbon Monoxide (일산화탄소를 이용하여 성장하는 acinetobacter의 분리 및 동정)

  • 조진원;임현숙;김영민
    • Korean Journal of Microbiology
    • /
    • v.23 no.1
    • /
    • pp.1-8
    • /
    • 1985
  • Three strains (JC1, JC2, and HY1) of aerobic carbon monoxide (CO)-utilizing Acinetobacter were isolated from soil through CO-enrichment culture technique. All of them were Gram-negative, nonmotile, and rod-shated but they were changed to spherical form at the end of logarithmic phase. They were resistant to penicillin and able to frow at $42^{\circ}C$. The guanine plus cytosine contents of the DNAs ranged from 43 to 44.5 mol%. Oxidase was not present in all cells. The colonies were smooth and whitish yellow. Heterotrophic growth occurred on several sugars, organic acids, amino acids, and alcohols. The doubling times under and atmosphere of 30% CO and 70% air at $30^{\circ}C$ were 19h, 25h, and 35h, respectively, for JC1, JC2, and HY1, JC1 was studied in more detail. The cells were grown optimally in a mineral medium (pH 6.8) under a gas mixture of 30% CO and 70% air at $30^{\circ}C$. Growth of the cells with CO did not depend on molybdenum. It was able to grow with 100 ppm of CO in air as a sole source of carbon and energy.

  • PDF