• Title/Summary/Keyword: 활성계수

Search Result 446, Processing Time 0.035 seconds

Effects of pH and Potassium Chloride in Solvent System of High-Speed Countercurrent Chromatography (pH 및 염화칼륨 첨가가 고속역류크로마토그래피의 용매시스템에 미치는 영향)

  • Lee, Chang-Ho;Lee, Boo-Yong;Lee, Hyun-Yu;Lee, Cherl-Ho
    • Korean Journal of Food Science and Technology
    • /
    • v.29 no.6
    • /
    • pp.1222-1227
    • /
    • 1997
  • Effects of the physical properties of solvent system such as pH and polarity change by salt addition in solvent system were investigated by using high speed countercurrent chromatography apparatus (Model CCC-1000, Pharm-Tech Research Corp. USA). The changes of pH and interfacial tension in solvent system of high speed countercurrent chromatography did not significantly affect on retention of stationary phase, but induced remarkable changes in the partition coefficient of ginkgo flavonoids, kaempferol, quercetin and isorhamnetin. The partition coefficients of ginkgo flavonoid standard increase with an increased pH of solvent system and quercetin sharply increased at pH 10.0. Retention of stationary phase decreases with an increased concentration of KCl in butanol of solvent system. Interfacial tension between two phase in solvent system of hexane increases with an increased concentration of KCl. The polarity of solvent system significantly changes the partition coefficients of ginkgo flavonoid.

  • PDF

Bio-kinetic and Design Analysis for Box-mill Wastewater Treatment Using Anoxic Activated Sludge Process (무산소 활성오니공정을 이용한 판지공장 폐수처리의 동력학적 해석 및 설계분석)

  • Cho, Yong-Duck;Lee, Sang-Wha;Kim, Young-Il
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.10
    • /
    • pp.1090-1097
    • /
    • 2006
  • The anoxic activated sludge process was applied to the treatment of industrial box-mill wastewater, which exhibited the high removal efficiencies of $90{\sim}94%$$ TCOD_{Mn}$ and $58{\sim}81%$ Color. For the design of industrial anoxic activated sludge process, Monod bio-kinetic coefficients of box-mill wastewater were estimated as follows: $K_{max}$(maximum specific substrate removal rate)=0.52 $day^{-1}$, $K_s$(half saturation constant)=314 mg/L, $K_d$(decay coefficient)=0.274 $day^{-1}$, y(microbial yield coefficient)=0.908 mg/mg, and ${\mu}_{max}$(maximum specific growth rate)=0.472 $day^{-1}$. Space loading factors for the design analysis were practically determined as the values of F/M ratio=$0.043{\sim}0.07$ kg-$TCOD_{Mn}$/kg-SS-day, BOD space loading=$0.18{\sim}0.3$ kg-$TCOD_{Mn}/m^3-day$, and ${\theta}_x=6.8{\sim}26.4$ day when considering the relationship of these loading factors with growth dynamics of microorganisms, the F/M ratio that is inversely proportional to ${\theta}_x$ should be equivalent to ${\mu}_{max}$ in units, but exhibited the significant difference between theses two values. Therefore, it is considered that high safety factors are requested in the design of anoxic activated sludge process that is based on Monod bio-kinetics of microorganism.

Adsorption and Diffusion Characteristics of Benzene, Toluene, and Xylene Vapors on Activated Carbon and Zeolite 13X (활성탄과 제올라이트 13X에서 벤젠, 톨루엔 및 자일렌 증기의 흡착 및 확산 특성)

  • Jung, Min-Young;Suh, Sung-Sup
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.358-367
    • /
    • 2019
  • Adsorption equilibrium and intraparticle diffusion characteristics of benzene, toluene, and xylene vapors on activated carbon and zeolite 13X were investigated. Static adsorption experiments were carried out under the pressure range of 0.01~0.07 bar while changing the adsorption temperature to 293.15 K, 303.15 K, and 313.15 K, respectively. Adsorption equilibrium was analyzed by Langmuir, Freundlich and Toth models. The adsorption energy was 5.26~31.0 kJ/mol representing physical adsorption characteristics. The maximum adsorption capacity on activated carbon was the largest for benzene, and the smallest for xylene. Toluene was in between. In the case of zeolite 13X, the maximum adsorption capacity was the largest for xylene, and the smallest for benzene as opposed to activated carbon. The effective diffusion coefficients of gas adsorbate were measured to be about $10^{-5}{\sim}10^{-4}cm^2/s$, and increased with temperature. As the pressure increased, the effective diffusion coefficients were decreased. The dependence of effective diffusion coefficients on temperature and pressure was greater in zeolite 13X particles than in activated carbon. Therefore, it is necessary to express the diffusion coefficients as a function of pressure in order to predict the precise dynamic behavior of the adsorption process using zeolite 13X where the pressure fluctuation occurs abruptly.

Bio-kinetic and Design Analysis of a Sequencing Batch Reactor by Aerobic Granular Sludge (호기성 입상화 슬러지를 이용한 SBR 운전의 동력학적 해석 및 설계분석)

  • Choi, Seong-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.4
    • /
    • pp.275-280
    • /
    • 2011
  • In the present work, the aerobic particle's characteristics were enhanced. A polymer was used to make aerobic granular sludge in short period of time. And operation parameters were calculated for organic matter removal in domestic wastewater using a sequencing batch reactor (SBR). The experiment for sewage (Influent concentration of 63~72 mg COD/L) by using mature aerobic granular sludge showed the organic matter removal rate k and oxygen utilization coefficient a', b' were $10.161d^{-1}$ and 0.87 mg $O_2/mg$ $COD_r$, 0.11 mg $O_2/mg$ MLVSS d respectively. Therefore, it was more effective than K value $5{\sim}8d^{-1}$ of conventional activated sludge process. The sludge synthetic value and sludge auto-oxydation value were 0.45 mg VSS/mg $COD_r$ and 0.05 mg VSS/mg MLVSS d respectively. Consequently, mortality rates of microorganisms was lower than conventional activated sludge process.

An Experimental Study on the Bond Characteristic of GFRP Bars in PVA Fiber Reinforced Activated Hwangtoh Concrete (PVA 섬유보강 황토 콘크리트에 대한 GFRP 보강근의 부착성능에 관한 실험적 연구)

  • Park, Mi-Rae;Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.1
    • /
    • pp.134-141
    • /
    • 2017
  • Many studies have been conducted with respect to the materials to replace the cement in order to reduce the carbon dioxide emissions during the cement production. Activated hwangtoh as cement replacement material goes through calcination process of $850^{\circ}C$. PVA fibers and GFRP bars are used in order to compensate for the cracks of activated hwangtoh concrete(AHC). This paper presents an experimental study investigating the bond characteristic of GFRP bars in PVA fiber reinforced AHC under tensile loads. Experimental results showed that average bond strength factor of specimens with and without PVA fiber was 2.27~2.48 and was not significantly affected by the ratio of PVA fiber andactivated hwangtoh. In addition, as the bond length was increased, the bond strength was reduced.

Absorption Characteristics of Soybean curd Powder by Drying Methods (건조방법에 따른 건조분말두부의 흡습특성)

  • Kim Jin-Sung;Kim Jun-Han;Ha Young-Sun
    • Food Science and Preservation
    • /
    • v.12 no.1
    • /
    • pp.54-61
    • /
    • 2005
  • The absorption characteristics and their physical properties of hot air, vacuum and freeze dried soybean curd powder were investigated. Absorption conditions were at 5, 15, and 25 t with $0.11\~0.93$ water activities. Equilibrium moisture content and the monolayer moisture content determined by prediction models showed highest value in the freeze dried soybean curd powder due to porous structure. Absorption energy decreased with increasing water activity was not affected by drying method. In the comparisons of the isothermal absorption models, Oswin model generally was the best fit model for isothermal adsorption of soybean curd powder.

A Stress-Strain Relationship of Alkali-Activated Slag Concrete (알칼리활성 슬래그 콘크리트의 응력-변형률 관계)

  • Yang, Keun-Hyeok;Song, Jin-Kyu;Lee, Kyong-Hun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.6
    • /
    • pp.765-772
    • /
    • 2011
  • The present study summarizes a series of compressive tests on concrete cylinder in order to examine the stressstrain relationship of alkali-activated (AA) slag concrete. The compressive strength and unit weight of concrete tested ranged from 8.6 MPa to 42.2 MPa and from $2,186kg/m^3$ to $2,343kg/m^3$, respectively. A mathematical equation representing the complete stress-strain curve was developed based on test results recorded from 34 concrete specimens. The modulus of elasticity, strain at peak stress, slopes of ascending and descending branches of stress-strain curves were generalized as a function of compressive strength and unit weight of concrete. The mean and standard deviation of the coefficient of variance between measured and predicted curves were 6.9% and 2.6%, respectively. This indicates that the stress-strain relationship of AA slag concrete is represented properly with more accuracy in the proposed model than in some other available models for ordinary portland cement (OPC) concrete.

Performance Improvement Method of Convolutional Neural Network Using Agile Activation Function (민첩한 활성함수를 이용한 합성곱 신경망의 성능 향상)

  • Kong, Na Young;Ko, Young Min;Ko, Sun Woo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.9 no.7
    • /
    • pp.213-220
    • /
    • 2020
  • The convolutional neural network is composed of convolutional layers and fully connected layers. The nonlinear activation function is used in each layer of the convolutional layer and the fully connected layer. The activation function being used in a neural network is a function that simulates the method of transmitting information in a neuron that can transmit a signal and not send a signal if the input signal is above a certain criterion when transmitting a signal between neurons. The conventional activation function does not have a relationship with the loss function, so the process of finding the optimal solution is slow. In order to improve this, an agile activation function that generalizes the activation function is proposed. The agile activation function can improve the performance of the deep neural network in a way that selects the optimal agile parameter through the learning process using the primary differential coefficient of the loss function for the agile parameter in the backpropagation process. Through the MNIST classification problem, we have identified that agile activation functions have superior performance over conventional activation functions.

원자력발전소 1차계통 탈염기 제염계수 특성 분석

  • 성기방;강덕원
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.387-391
    • /
    • 1997
  • 냉각재중의 방사능을 띤 성분 중에는 이온교환기에서 제거가 가능한 이온성분과 함께 필터에 의해서 주로 제거되는 입자성 물질로 존재한다. 운전중의 냉각재내 방사성 부식생성물의 물리적 조성 분포 측정 결과에 따르면 90%이상이 0.45$mu extrm{m}$필터에 의해 제거되는 입자성 물질로 구성되어 있다. 이로 인해 새수지 충전후 얼마 사용하지 않은 탈염기의 제염계수가 탈염기에서 완벽한 제거가 어려운 입자성 부식생성물로 인해 10이하를 나타낼 수 있다. 1차계통에 쓰이는 수지의 성능검사를 위해 사용하고 있는 현재의 제염계수 측정법은 다음과 같은 두가지 이유로 완벽하지 않음을 알 수 있다. 첫째, 냉각재중의 방사능을 띤 성분중에는 이온교환기에서 제거가 가능한 이온성분과 함께 필터에 의해 제거되는 입자성 물질도 함께 존재하므로 탈염기의 제염계수 측정 절차는 입자성 물질을 배제한 후 측정해야 하며, 특히 수치 교체를 결정하기 위한 제염계수 측정시에는 여과된 여액으로 방사능 농도를 측정하는 것이 바람직하다. 둘째 운전중인 냉각재의 시료중에는 핵분열 수율이 높고 핵연료봉 손상부위로 유출이 용이한 불활성 기체핵종들이 많이 존재하며, 탈염기 후단에서 채취한 시료중에도 많이 존재하고, 시료 이송과 방사능 측정동안의 짧은 시간동안에도 계속 붕괴반응함으로서 새로 생긴 핵종으로 인해 마치 탈염기의 제거능이 낮은 것으로 오판될 수 있다. 이러한 측정 오차인자를 고려하여야 1차계통 탈염기의 교환능력을 정확히 판정할 수 있다.

  • PDF

Application of FT - PGSE for Micelle Formation of Surfactant Solution (계면활성제 용액의 미셀형성에 있어 FT - PGSE의 응용)

  • Nam, K.D.;Choi, S.O.
    • Journal of the Korean Applied Science and Technology
    • /
    • v.16 no.1
    • /
    • pp.1-14
    • /
    • 1999
  • 계면활성제는 수용액에서 미셀을 형성함에 있어서 자기확산이 분자 운동과 상변화에 대하여 자세한 정보를 제공하고 공업적으로 응용할 수 있는 기술이 점차 증가하고 있다. 계면활성제가 미셀을 형성함에 있어 자기확산 정도는 화학구조의 변화성과 상호 결합 및 회합현상에 매우 민감한 것은 사실이다. 특히 계면활성제 용액의 넓은 범위의 분자 시스템과 콜로이드 상태의 변화성은 다향한 물리, 화학적 성질에 기여됨이 많다. 더욱이 미셀 형성에서 자기확산 계수는 분자 치환에 직간접적으로 상호관계가 있어 NMR 분광학에서 스핀 이완속도의 해석과 분자의 재배열, 스핀 이완에 대한 모델선정 등에 많은 관심을 갖는다. 그중 미셀형성에 있어서 자기확산에 대한 측정 방법중 가장 많이 이용되고 있는 Fourier Transform Pulsed Gradient Spin Echo(FT-PGSE) 측정법은 계면활성제의 미셀형성에 대한 상변화성 및 물리, 화학적 성질을 다루는데 새로운 도구로 제공되고 있다. 이는 이 계통의 기술적 측정방법에 있어서 적절한 개선과 새로운 응용분야를 확장하는데 있어서 많은 가능성을 갖고있다. 그리하여 이들에 대한 역사적 배경과 기초적인 이론을 가지고 미셀 형성에 있어 자기확산에 대한 개념을 말하고 그에 대한 응용성을 계통적으로 설명하고자 한다.