• Title/Summary/Keyword: 환원침전

Search Result 154, Processing Time 0.017 seconds

Evaluation of Manganese Removal from Acid Mine Drainage by Oxidation and Neutralization Method (산화법과 중화법을 이용한 산성광산배수 내 망간 제거 평가)

  • Kim, Bum-Jun;Ji, Won-Hyun;Ko, Myoung-Soo
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.687-694
    • /
    • 2020
  • Two oxidizing agents (KMnO4, H2O2), and one neutralizing agent (NaOH) were applied to evaluate Mn removal in mine drainage. A Mn2+ solution and artificial mine drainage were prepared to identify the Fe2+ influence on Mn2+ removal. The initial concentrations of Mn2+ and Fe2+ were 0.1 mM and 1.0 mM, respectively. The injection amount of oxidizing and neutralizing agents were set to ratios of 0.1, 0.67, 1.0, and 2.0 with respect to the Mn2+ mole concentration. KMnO4 exhibited a higher removal efficiency of Mn2+ than did H2O2 and NaOH, where approximately 90% of Mn2+ was removed by KMnO4. A black MnO2 was precipitated that indicated the oxidation of Mn2+ to Mn4+ after an oxidizing agent was added. In addition, MnO2 (pyrolusite) is a stable precipitate under pH-Eh conditions in the solution. However, relatively low removal ratios (6%) of Mn2+ were observed in the artificial mine drainage that included 1.0 mM of Fe2+. The rapid oxidation tendency of Fe2+ as compared to that of Mn2+ was determined to be the main reason for the low removal ratios of Mn2+. The oxidation of Fe2+ showed a decrease of Fe concentration in solution after injection of the oxidizing and neutralizing agents. In addition, Mn7+ of KMnO4 was reduced to Mn2+ by Fe2+ oxidation. Thus, the concentrations of Mn increased in artificial mine drainage. These results revealed that the oxidation method is more effective than the neutralization method for Mn removal in solution. It should also be mentioned that to achieve the Mn removal in mine drainage, Fe2+ removal must be conducted prior to Mn2+ oxidation.

Fly Ash Application Effects on CH4 and CO2 Emission in an Incubation Experiment with a Paddy Soil (항온 배양 논토양 조건에서 비산재 처리에 따른 CH4와 CO2 방출 특성)

  • Lim, Sang-Sun;Choi, Woo-Jung;Kim, Han-Yong;Jung, Jae-Woon;Yoon, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.853-860
    • /
    • 2012
  • To estimate potential use of fly ash in reducing $CH_4$ and $CO_2$ emission from soil, $CH_4$ and $CO_2$ fluxes from a paddy soil mixed with fly ash at different rate (w/w; 0, 5, and 10%) in the presence and absence of fertilizer N ($(NH_4)_2SO_4$) addition were investigated in a laboratory incubation for 60 days under changing water regime from wetting to drying via transition. The mean $CH_4$ flux during the entire incubation period ranged from 0.59 to $1.68mg\;CH_4\;m^{-2}day^{-1}$ with a lower rate in the soil treated with N fertilizer due to suppression of $CH_4$ production by $SO_4^{2-}$ that acts as an electron acceptor, leading to decreases in electron availability for methanogen. Fly ash application reduced $CH_4$ flux by 37.5 and 33.0% in soils without and with N addition, respectively, probably due to retardation of $CH_4$ diffusion through soil pores by addition of fine-textured fly ash. In addition, as fly ash has a potential for $CO_2$ removal via carbonation (formation of carbonate precipitates) that decreases $CO_2$ availability that is a substrate for $CO_2$ reduction reaction (one of $CH_4$ generation pathways) is likely to be another mechanisms of $CH_4$ flux reduction by fly ash. Meanwhile, the mean $CO_2$ flux during the entire incubation period was between 0.64 and $0.90g\;CO_2\;m^{-2}day^{-1}$, and that of N treated soil was lower than that without N addition. Because N addition is likely to increase soil respiration, it is not straightforward to explain the results. However, it may be possible that our experiment did not account for the substantial amount of $CO_2$ produced by heterotrophs that were activated by N addition in earlier period than the measurement was initiated. Fly ash application also lowered $CO_2$ flux by up to 20% in the soil mixed with fly ash at 10% through $CO_2$ removal by the carbonation. At the whole picture, fly ash application at 10% decreased global warming potential of emitted $CH_4$ and $CO_2$ by about 20%. Therefore, our results suggest that fly ash application can be a soil management practice to reduce green house gas emission from paddy soils. Further studies under field conditions with rice cultivation are necessary to verify our findings.

Structural and Compositional Characteristics of Skarn Zinc-Lead Deposits in the Yeonhwa-Ulchin Mining District, Southeastern Taebaegsan Region, Korea Part II : The Yeonhwa II Mine (연화(蓮花)-울진광산지대(蔚珍鑛山地帶) 스카른연(鉛)·아연광상(亞鉛鑛床)의 구조적(構造的) 및 성분적(成分的) 특징(特徵) 기이(其二) : 제2연화광산(第二蓮花鑛山))

  • Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.12 no.3
    • /
    • pp.147-176
    • /
    • 1979
  • The Yeonhwa II zinc-lead mine is characterized by a dozen of moderately dipping tabular orebodies of skarn and zinc-lead sulfides, developed in accordance with the ENE-trending bedding thrusts and bedding planes of the Pungchon Limestone and underlying Myobong Formation, mostly along the contacts of a ENE-trending sill and a NW-trending dike of quartz mononite porphyry. The orebodies occur in three groups: (1) the footwall Wolgok orebodies with respect to the sill, (2) the hangingwall Wolgok orebodies, and (3) the Seongok orebodies extended from dike contacts into carbonate beds. Mineral compositions of these orebodies are dominated by calc-silicates (skarn) associated with ore minerals of sphalerite, galena, and chalcopyrite, as well as sulfide gangue of pyrrhotite. A pair of exo- and endo-skerns in the Wolgok footwall contact aureole between the Pungchon Limestone and quartz monzonite porphyry on the -120 level represents a well-developed symmetrical pattern of mineral zoning: a garnet/quartz zone in the center of exoskarn, two zones of pyroxene with ore minerals on both sides of the garnet/quartz zone, further outwards-an epidote/chlorite-bearing hornfelsic zone in the Myobong slate beyond a zone of unaffected limestone, and an epidote-dominated zone of endo skarn on the opposite side toward fresh quartz monzonite porphyry. These features indicate a combination of two effects on the skarn formation: (1) differences in composition of the host rocks(sedimentary and ignous), and (2) progressive outward migration of inner zones on outer zones on the course of metasomatic replacement of the pre-existing minerals. Microprobe analyses of garnet, pyroxene, pyroxenoids, epidote, and chlorite for nine major elements on a total of 23 mineral grains revealed that: the pyroxenes are hedenbergitic, in most zones, with a gradual decrease of Fe- and Mn-contents toward the central zone, whereas the garnets are andraditic in outer zones, but are grossularitic in the central zone. This indicates a reverse relationship of Fe-contents between pyroxene and garnet across the exoskarn zones. Pyroxenoids are lacking in wollastonite but are dominated by pyroxmangite, rhodonite and bustamite, indicating a Mn-rich nature in bulk chemistry. Pseudomorphic fluorite after garnet occurs abundantly reflecting a fluorine-enhanced evidence of the skarn-forming fluids. Epidote contains 0.19-0.25mole fraction of pistacite, and chlorite is Mn-rich but is Mg-poor. Sulfide mineralization took place with the most Fe-rich pyroxene rather than with garnet as indicated by the fact that the highest value of hedenbergite mole fraction occurs in the ore-bearing pyroxene zone. The Yeonhwa II ores are characterized by high zinc and low lead in metal grade, with minor quantity of copper content in almost constant grade. The hangingwall Wolgok and Seongok orebodies, that formed in a more open environment with respect to their local configurations of geologic setting, are more variable in metal grades and ratios, than are the footwall Wolgok orebodies formed in a more closed condition in a narrow interval of sedimentary beds.

  • PDF

Studies on Nutrio-physiological Response of Rice Plant to Root Environment (근부환경(根部環境)에 따른 수도(水稻)의 영양생리적(營養生理的) 반응(反應)에 관(關)한 연구(硏究))

  • Park, J.K.;Kim, Y.S.;Oh, W.K.;Park, H.;Yazawa, F.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.53-68
    • /
    • 1969
  • The nutriophysiological response of rice plant to root environment was investigated with eye observation of root development and rhizosphere in situation. The results may be summarized as follows: 1) The quick decomposition of organic matter, added in low yield soil, caused that the origainal organic matter content was reached very quickly, in spite of it low value. In high yield soil the reverse was seen. 2) In low yield soil root development, root activity and T/R value were very low, whereas addition of organic matter lowered them still wore. This might be contributed to gas bubbles around the root by the decomposition of organic matter. 3) Varietal difference in the response to root environment was clear. Suwon 82 was more susceptible to growth-inhibitine conditions on low-yield soil than Norin 25. 4) Potassium uptake was mostly hindered by organic matter, while some factors in soil hindered mostly posphorus uptake. When the organic matter was added to such soil, the effect of them resulted in multiple interaction. 5) The root activity showed a correlation coeffieient of 0.839, 0.834 and 0.948 at 1% level with the number of root, yield of aerial part and root yield, respectively. At 5% level the root-activity showed correlation-coefficient of 0.751, 0.670 and 0.769 with the uptake of the aerial part of respectively. N, P and K and a correlation-coefficient of 0.729, 0.742 and 0.815 with the uptake of the root of respectively N.P. and K. So especially for K-uptake a high correlation with the root-activity was found. 6) The nitrogen content of the roots in low-yield soil was higher than in high-yield soil, while the content in the upper part showed the reverse. It may suggest ammonium toxicity in the root. In low-yield soil Potassium and Phosphorus content was low in both the root and aerial part, and in the latter particularly in the culm and leaf sheath. 7) The content of reducing sugar, non-recuding sugar, starh and eugar, total carbohydrates in the aerial part of plants in low yield soil was higher than in high yield soil. The content of them, especially of reducing sugar in the roots was lower. It may be caused by abnormal metabolic consumption of sugar in the root. 8) Sulfur content was very high in the aerial part, especially in leaf blade of plants on low yield soil and $P_2O_5/S$ value of the leaf blade was one fifth of that in high yield soil. It suggests a possible toxic effect of sulfate ion on photophosphorization. 9) The high value of $Fe/P_2O_5$ of the aerial part of plants in low yield soil suggests the possible formation of solid $Fe/PO_4$ as a mechanical hindrance for the translocation of nutrients. 10) Translocation of nutrients in the plant was very poor and most nutrients were accumulated in the root in low yield soil. That might contributed to the lack of energy sources and mechanical hindrance. 11) The amount of roots in high yield soil, was greater than that in low yield soil. The in high-yield soil was deep, distribution of the roots whereas in the low-yield soil the root-distribution was mainly in the top-layer. Without application of Nitrogen fertilizer the roots were mainly distributed in the upper 7cm. of topsoil. With 120 kg N/ha. root were more concentrated in the layer between 7cm. and 14cm. depth. The amount of roots increased with the amount of fertilizer applied.

  • PDF