• Title/Summary/Keyword: 환원철

Search Result 512, Processing Time 0.04 seconds

Evaluation of Denitrification Reactivity by the Supported Nanoscale Zero-Valent Iron Prepared in Ethanol-Water Solution (이중용매에서 제조된 나노영가철을 이용한 질산성질소의 환원반응성 평가)

  • Park, Heesu;Park, Yong-Min;Oh, Soo-Kyeong;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Korean Chemical Engineering Research
    • /
    • v.46 no.5
    • /
    • pp.1008-1012
    • /
    • 2008
  • Nanoscale zero-valent iron(nZVI) is famous for its high reactivity originated from its high surface area and it has received considerable attentions as one of the latest innovative technologies for treating contaminated groundwater. Due to its fine powdery form, nZVI has limited filed applications. The efforts to overcome this shortcoming by immobilizing nZVI on a supporting material have been made. This study investigated the differences of resin-supported nZVI's characteristics by changing the preparation methods and evaluated its reactivity. The borohydride reduction of an iron salt was proceeded in ethanol/water solvent containing a dispersant and the synthesis was conducted in the presence of ion-exchange resin. The resulting material was compared to that prepared in a conventional way of using de-ionized water by measuring the phyrical and chemical characteristics. BET surface area and Fe content of nZVI-attached resin was increased from $31.63m^2/g$ and 18.19 mg Fe/g to $38.10m^2/g$ and 22.44 mg Fe/g, respectively, by switching the solution medium from water to ethanol/water with a dispersant. The reactivity of each material was tested using nitrate solution without pH control. The pseudo first-order constant of $0.462h^{-1}$ suggested the reactivity of resin-supported nZVI prepared in ethanol/water was increased 61 % compared to that of the conventional type of supported nZVI. The specific reaction rate constant based on surface area was also increased. The results suggest that this new supported nZVI can be used successfully in on-site remediation for contaminated groundwater.

Evaluation of Antioxidant Activities of Red Beet Extracts, and Physicochemical and Microbial Changes of Ground Pork Patties Containing Red Beet Extracts during Refrigerated Storage (레드비트 추출물의 항산화 활성 및 레드비트를 첨가한 돈육패티의 냉장저장 중 이화학적 성상 및 미생물의 변화)

  • Lee, Jun-Ho;Chin, Koo-Bok
    • Food Science of Animal Resources
    • /
    • v.32 no.4
    • /
    • pp.497-503
    • /
    • 2012
  • This study was performed in order to evaluate the antioxidant activities of red beet extracts as well as the physicochemical properties and microbial changes of pork patties containing red beet during refrigerated storage. Red beet was extracted with water and ethanol. Red beet water extracts (RBW) and red beet ethanol extracts (RBE) were diluted with various concentrations (0.05~1.0%). DPPH radical scavenging activity and iron chelation activity of RBW showed a higher level than those of RBE (p<0.05). In particular, the iron chelation activity of RBW was over 53.4% at all levels. In addition, RBW at 1% had nearly 100% activity. On the other hand, the reducing powers of RBE were higher than those of RBW (p<0.05), and the antioxidant activity on linoleic acid emulsion of RBW was over 83% at all levels. Based on these model studies, 0.5% levels of RBW and RBE were added to ground pork patties (GPP), and the physicochemical properties and microbial changes of red beet GPP were evaluated during storage (0~14 d) at $4^{\circ}C$. The pH and microbial counts increased with increased storage time (p<0.05). Pork patties with BHT showed the lowest thiobarbituric acid reactive substances (TBARS) and microbial counts, and those with red beet had lower TBARS than the control (p<0.05). These results indicated that both red beet water and ethanol extracts could be used as natural antioxidants of pork patties during storage.

Origin and Reservoir Types of Abiotic Native Hydrogen in Continental Lithosphere (대륙 암석권에서 무기 자연 수소의 성인과 부존 형태)

  • Kim, Hyeong Soo
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.35 no.3
    • /
    • pp.313-331
    • /
    • 2022
  • Natural or native abiotic molecular hydrogen (H2) is a major component in natural gas, however yet its importance in the global energy sector's usage as clean and renewable energy is underestimated. Here we review the occurrence and geological settings of native hydrogen to demonstrate the much widesprease H2 occurrence in nature by comparison with previous estimations. Three main types of source rocks have been identified: (1) ultramafic rocks; (2) cratons comprising iron (Fe2+)-rich rocks; and (3) uranium-rich rocks. The rocks are closely associated with Precambrian crystalline basement and serpentinized ultramafic rocks from ophiolite and peridotite either at mid-ocean ridges or within continental margin(Zgonnik, 2020). Inorganic geological processes producing H2 in the source rocks include (a) the reduction of water during the oxidation of Fe2+ in minerals (e.g., olivine), (b) water splitting due to radioactive decay, (c) degassing of magma at low pressure, and (d) the reaction of water with surface radicals during mechanical breaking (e.g., fault) of silicate rocks. Native hydrogen are found as a free gas (51%), fluid inclusions in various rock types (29%), and dissolved gas in underground water (20%) (Zgonnik, 2020). Although research on H2 has not yet been carried out in Korea, the potential H2 reservoirs in the Gyeongsang Basin are highly probable based on geological and geochemical characteristics including occurrence of ultramafic rocks, inter-bedded basaltic layers and iron-copper deposits within thick sedimentary basin and igneous activities at an active continental margin during the Permian-Paleogene. The native hydrogen is expected to be clean and renewable energy source in the near future. Therefore it is clear that the origin and exploration of the native hydrogen, not yet been revealed by an integrated studies of rock-fluid interaction studies, are a field of special interest, regardless of the presence of economic native hydrogen reservoirs in Korea.

Studies on the Constituents of Gynostemma pentaphyllum Makino (덩굴차(Gynostemma pentaphylum Makino)의 성분에 관한 연구)

  • Lee, Heon-Ok;Ko, Young-Su
    • Korean journal of food and cookery science
    • /
    • v.6 no.4 s.13
    • /
    • pp.69-83
    • /
    • 1990
  • Gynostemma pentaphyllum Makino is a kind of perennial liana plant belonging to the Cucurbitaceae family. Since it was first discovered and reported to the Japanese academy in 1977, it came to be widely known to China and Southeast Asia areas as well as Japan. In Korea its name began to appear in the first half of 1980's, and it is now being nationwidely cultivated and popularized as tea stuffs. Gynostemma pentaphyllum Makino has remarkably strong propagation power. In addition. since it contains a great quantity of beneficial components, especially saponin it is believed to have excellent medical effects, too. This study was undertaken to examine the value of Gynostemma pentaphyllum Makino as a health-promotint tea, by investigating the components creating the flaver of tea and the saponin ingredient making medical effects as well as by inspecting whether Gynostemma pentaphyllum Makino products show different component arrangements according to their growing districts. As raw materials of the experiment, three kinds of Gynostemma pentaphyllum Makino samples produced in Suwon, Geochang and Uleungdo were taken. To accomplish the formerly stated goals, the contained quantity of the proximate composition, free sugar, reducing sugar, free amino acid, minerals, tannin, caffeine and vitamin C were measured respectively and compared between the samples, while the saponin content was compared with heat extracted from panax ginseng. The results of the experiment are as follows: 1. In the case of the proximate composition, the crude fat content was the highest in the Gymostemma pentaphyllum Makino material from Geochang (1.62%), the second in that from Suwon (1.56%), and the lowest in that from Uleungdo (1.0%). In addition the Geochang: produced sample had the greatest quantity of the crude protein and ash contents: the order of the crude Protein content was the Geochang produced (17.83%), the Suwon-produced (15.87%), and the Uleungdo-produced(12.28%), while that of the ash content was the Geochang-produced (14.80%), the Uleungdo-produced(10.17%), and the Suwon-produced(9.34%). 2. As for the reducing sugar contents, the Suwon-produced scored the highest of the three (3.3%), while the Geochang-produced was 1.3% and the Uleungdo-produced 0.5%. The total content of free sugar was 1.07% (the Suwon-produced), and 0.49% (the Geochang-produced) respectively but the sample from Uleungdo showed almost no free sugar content. The contained quantity of fructose and glucose was the highest among the kinds of free sugar both in the Suwon-produced and in the Geochang-produced. 3. The content of amino acid was the highest in the Suwon-produced(1.41%), the second in the Geochang-produced(1.37%), and the lowest in the Uleungdo-produced(0.53%). In the experiment, sixteen kinds of amino acid were extracted-Asp. Thr. Ser. Glu. Gly. Ala. Val. Het. Ileu. Leu. Tyr. Phe. Lys. His. Arg. Try. All of them except glutamic acid and methionine showed the highest quantity score in the Suwon-produced, while the glutamic acid content was the higest in the Uleungdo-produced and the methionine content in the Geochang-produced. The sequential arrangement of the sixteen contents according to their magnitude ranged from glycine, aspartic acid, and glutamic acid (the highest) to tryptophan, serine and lysine (the lowest). 4. Ten kinds of mineral were detected-Ca, Mn, Cd, K, Na, Pb, Mg, Fe, Zn, Cu. Among them, the content of Cd, Na, Mg, Zn and Fe was the highest in the Geochang-produced and that of K in the Suwon-produced. 5. The Geochang-produced materials contained much a larger quantity of tannin (6.3%) than the Suwon-produced (2.6%). Neither caffeine nor vitamin C was detected in the three kinds of materials. 6. In the case of the saponin content the Geochang-produced showd 2.39%, the Uleungdo-produced 1.77% and the Suwon-produced 1.49% respectively. However, it was found also that the saponin content of Gymostemma pentaphyllum Makino was the same kind as that of panax ginseng.

  • PDF

In vitro antioxidant, anti-diabetic, anti-cholinesterase, tyrosinase and nitric oxide inhibitory potential of fruiting bodies of Coprinellus micaceus (갈색먹물버섯 자실체의 메탄올과 열수추출물의 항산화, 항당뇨, 항콜린에스테라아제, 항티로시나아제 및 Nitric oxide의 저해 효과)

  • Nguyen, Trung Kien;Lee, Min Woong;Yoon, Ki Nam;Kim, Hye Young;Jin, Ga-Heon;Choi, Jae-Hyuk;Im, Kyung Hoan;Lee, Tae Soo
    • Journal of Mushroom
    • /
    • v.12 no.4
    • /
    • pp.330-340
    • /
    • 2014
  • Coprinellus micaceus, belongs to family Psathyrellaceae of Agaricales, Basidiomycota, has been used for edible purposes in the world. This study was initiated to evaluate the antioxidant, anti-diabetic, anti-cholinesterase, anti-tyrosinase, and nitric oxide inhibitory activities of fruiting bodies from C. micaceus extracted with methanol and hot water. The HPLC analysis of phenolic compounds from the mushroom extracts identified 4 phenolic compounds including procatechuic acid, chlorogenic acid, (-)-epicatechin, and naringin. In 1,1-diphenyl-2-picrylhydrazyl(DPPH) free radical scavenging assay, the scavenging activities of methanol and hot water extracts were lower than that of positive control, BHT. The chelating effects of methanol and hot water extracts were significantly higher than that of BHT, the positive control at the all concentrations tested. In the reducing power assay, methanol and hot water extracts exhibited the lower activities compared with positive control at the 0.125-0.2 mg/ml. The methanol and hot water extracts of the mushroom inhibited the ${\alpha}$-glucosidase activity by 62.26% and 67.59%, respectively at the 2.0 mg/ml, while acarbose, the positive control, inhibited the ${\alpha}$-glucosidase activity by 81.81% at the same concentration. In the acetylcholinesterase(AChE) inhibitory activity assay, methanol and hot water extracts of the mushroom inhibited the AChE by 94.64% and 74.19%, respectively at 1.0 mg/ml, whereas the galanthamine, standard drug, inhibited the AChE activity by 97.80% at the same concentration. The tyrosinase inhibitory activities of methanol and hot water extracts were 91.33% and 91.99% at 2.0 mg/ml, while the inhibitory activity of kojic acid, the positive control, was 99.61% at the same concentration. Nitric oxide(NO) production in lipopolysaccahride (LPS) activated RAW 264.7 cells were inhibited by the methanol and hot water extracts in a concentration dependent manner. Therefore, it is concluded that fruiting bodies of C. micaceus contained natural antioxidant, anti-acetylcholinesterase and ${\alpha}$-glucosidase inhibitory, anti-inflammatory, anti-tyrosinase substances which might be used for promoting human health.

Study of Volcanic Gases and Hot Spring Water to Evaluate the Volcanic Activity of Mt. Baekdu (백두산 화산활동 평가를 위한 화산가스 및 온천수에 대한 연구)

  • Lee, Sangchul;Yun, Sung-Hyo
    • Economic and Environmental Geology
    • /
    • v.50 no.2
    • /
    • pp.171-180
    • /
    • 2017
  • This study performed the analysis on the volcanic gases and hot spring waters from the Julong hot spring at Mt. Baekdu during the period from July 2015 to August 2016. Also, we confirmed the errors that $HCO_3{^-}$ concentrations of hot spring waters in the previous study (Lee et al. 2014) and tried to improve the problem. Dissolved $CO_2$ in hot spring waters was analyzed using gas chromatograph in Lee et al. (2014). Improving this, from 2015, we used TOC-IC to analysis dissolved $CO_2$. Also, we analyzed the $Na_2CO_3$ standard solutions of different concentrations using GC, and confirmed the correlation between the analytical concentrations and the real concentrations. However, because the analytical results of Julong hot spring water were in discord with the estimated values based on this correlation, we can't estimate the $HCO_3{^-}$ concentrations of 2014 samples. During the period of study, $CO_2/CH_4$ in volcanic gases are gradually decreased, and this can be interpreted in two different ways. The first interpretation is that the conditions inside the volcanic edifice are changing into more reduction conditions, and carbon in volcanic gases become more favorable to distribute into $CH_4$ or CO than $CO_2$. The second interpretation is that the interaction between volcanic gases and water becomes greater than past, and the concentrations of $CO_2$ which have much higher solubility in water decreased, relatively. In general, the effect of scrubbing of volcanic gas is strengthened during the quiet periods of volcanic activity rather than active periods. Meanwhile, the analysis of hot spring waters was done on the anion of acidic gases species, the major cation, and some trace elements (As, Cd, Re).

Comparative Assessment of Specific Genes of Bacteria and Enzyme over Water Quality Parameters by Quantitative PCR in Uncontrolled Landfill (정량 PCR을 이용한 비위생 매립지의 특정 세균 및 효소 유전자와 수질인자와의 상관관계 평가)

  • Han, Ji-Sun;Sung, Eun-Hae;Park, Hun-Ju;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.8
    • /
    • pp.895-903
    • /
    • 2007
  • As for the increasing demanding on the development of direct-ecological landfill monitoring methods, it is needed for critically defining the condition of landfills and their influence on the environment, quantifying the amount of enzymes and bacteria mainly concerned with biochemical reaction in the landfills. This study was thus conducted to understand the fates of contaminants in association with groundwater quality parameters. For the study, groundwater was seasonally sampled from four closed unsanitary landfills(i.e. Cheonan(C), Wonju(W), Nonsan(N), Pyeongtaek(P) sites) in which microbial diversity was simultaneously obtained by 16S rDNA methods. Subsequently, a number of primer sets were prepared for quantifying the specific gene of representative bacteria and the gene of encoding enzymes dominantly found in the landfills. The relationship between water quality parameters and gene quantification were compared based on correlation factors. Correlation between DSR(Sulfate reduction bacteria) gene and BOD(Biochemical Oxygen Demand) was greater than 0.8 while NSR(Nitrification bacteria-Nitrospira sp.) gene and nitrate were related more than 0.9. A stabilization indicator(BOD/COD) and MTOT(Methane Oxidation bacteria), MCR(Methyl coenzyme M reductase), Dde(Dechloromonas denitrificans) genes were correlated over 0.8, but ferric iron and Fli(Ferribacterium limineticm) gene were at the lowest of 0.7. For MTOT, it was at the highest related at 100% over BOD/COD. In addition, anaerobic genes(i.e., nirS-Nitrite reductase, MCR. Dde, DSR) and DO were also related more than 0.8, which showing anaerobic reactions generally dependant upon DO. As demonstrated in the study, molecular biological investigation and water quality parameters are highly co-linked, so that quantitative real-time PCR could be cooperatively used for assessing landfill stabilization in association with the conventional monitoring parameters.

Antimicrobial, Antioxidant and Anticoagulation Activities of Korean Radish (Raphanus sativus L.) Leaves (무청의 항균, 항산화 및 항혈전 활성)

  • Lee, Ye-Seul;Kwon, Kyung-Jin;Kim, Mi-Sun;Sohn, Ho-Yong
    • Microbiology and Biotechnology Letters
    • /
    • v.41 no.2
    • /
    • pp.228-235
    • /
    • 2013
  • Radish (Raphanus sativus) is a common cruciferous vegetable, and its aerial parts, called Mu-chung in Korean, have plentiful nutritional components such as vitamins, minerals and dietary fibers. Mu-chung has been used as a kimchi, a traditional Korean fermented dish, and dried Mu-chung is an important component of soups commonly consumed during winter in Korea. Since the advent of the mass production of radish in Korea, with the segregation of farm areas and towns and changing diets, Mu-chung has mostly been discarded instead of utilized. In addition, studies concerning the efficient utilization and useful bioactivities of Mu-chung are still lacking worldwide. In this study, we prepared the ethanol extract of Mu-chung and its subsequent solvent fractions. Antimicrobial, antioxidation, and anticoagulation activities were then evaluated in the hopes of developing a functional biomaterial from Korean radishes' aerial parts. The ethanol extraction yield for hot-air dried Mu-chung was 5.6%, and the fraction yields of n-hexane (H), ethylacetate (EA), butanol (B) and water residue were 25.3, 3.6, 19.4, and 51.7%, respectively. Analysis of total polyphenol and total flavonoid contents showed that the EA fraction had the highest content (97.57 and 152.91 mg/g) amongst the fractions. In antimicrobial activity assays, the H and EA fractions were effective against gram positive bacteria (Staphylococcus aureus, Listeria monocytogenes, and Bacillus subtilis), but not effective against gram negative bacteria (Escherichia coli and Pseudomonas aeruginosa). The B fraction also exhibited moderate antibacterial activity, suggesting that the extract of Mu-chung has various antibacterial components. In antioxidation activity assays, the EA fraction showed strong DPPH, ABTS and nitrite scavenging activities ($69-222{\mu}g/ml$ of $IC_{50}$), including reducing power. In anticoagulation activity assays, the EA fraction demonstrated strong inhibition activity against human thrombin and prothrombin. Prominent anticoagulation activity was found in aPTT assays; the aPTT of the EA fraction was extended 15-fold compared than that of the solvent control. Our results suggest that Mu-chung is an attractive nutritional food material possessing useful bioactivities, and the EA fraction of Mu-chung could be developed as a functional food ingredient.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by $Zn^{+2}/Fe^{+2}$ Ion and Coprecipitation in Practical Plant(I) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(I))

  • Lee, Jong-Cheul;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1381-1389
    • /
    • 2007
  • Wastewater discharged by industrial activities of metal finishing and electroplating units is often contaminated by a variety of toxic or otherwise harmful substances which have a negative effects on the water environment. The treatment method of heavy metal-cyanide complexes wastewater by alkaline chlorination have already well-known($1^{st}$ Oxidation: pH 10, reaction time 30 min, ORP 350 mV, $2^{nd}$ Oxidation: ORP 650 mV). In this case, the efficiency for the removal of ferro/ferri cyanide by this general alkaline chlorination is very high as 99%. But the permissible limit of Korean waste-water discharge couldn't be satisfied. The initial concentration of cyanide was 374 mg/L(the Korean permissible limit of cyanide is 1.0 mg/L max.). So a particular focus was given to the treatment of heavy metal-cyanide complexes wastewater by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation after alkaline chlorination. And we could meet the Korean permissible limit of cyanide(the final concentration of cyanide: 0.30 mg/L) by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation(reaction time: 30 min, pH: 8.0, rpm: 240). The removal of Chromium ion by reduction(pH: 2.0 max, ORP: 250 mV) and the precipitation of metal hydroxide(pH: 9.5) is treated as 99% of removal efficiency. The removal of Copper and Nickel ion has been treated by $Na_2S$ coagulation-flocculation as 99% min of the efficiency(pH: $9.09\sim10.0$, dosage of $Na_2S:0.5\sim3.0$ mol). It is important to note that the removal of ferro/ferri cyanide of heavy metal-cyanide complexes wastewater should be employed by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation as well as the alkaline chlorination for the Korean permissible limit of waste-water discharge.

Analysis of Bacterials Community Structure in Leadchate-Contaminated Groundwater using Denaturing Gradient Gel Electrophoresis (Denaturing Gradient Gel Electrophoresis를 이용한 매립지 침출수로 오염된 지하수의 세균 군집 분석)

  • Kim Jai-Soo;Kim Ji-Young;Koo So-Yeon;Ko Kyung-Seok;Lee Sang-Don;Cho Kyung-Suk;Koh Dong-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This research has been performed to clarify the relationship between hydrogeochemistry and bacterial community structure in groundwater contaminated with landfill leachate. We collected and analyzed samples from 5 sites such as leachate (KSG1-12), treated leachate (KSG1-16), two contaminated groundwaters (KSG1-07 and KSG1-08) and non-contaminated groundwater (KSG1-13). pH was 8.83, 8.04, 6.87, 6.87 and 6.53 in order; redox potential (Eh) 108, 202, 47, 200 and 154 mV; electric conductivity (EC) 3710, 894, 1223, 559 and 169.9 $\mu$S/cm; suspended solids (SS) 86.45, 13.74, 4.18, 0.24 and 11.91 mg/L. In KSG01-12, the ion concentrations were higher especially in $Cl^-$ and $HCO_3^-$ than other sites. The concentrations of Fe, Mn and $SO_4^{2-}$ were higher In KSG1-07 than in KSG1-08, and vise versa in $NO_3^{2-}$. In the comparison of DGGE fingerprint patterns, the similarity was highest between KSG1-13 and KSG1-16 (57.2%), probably due to common properties like low or none contaminant concentrations. Otherwise KSG1-08 showed lowest similarities with KSG1-13 (25.8%) and KSG1-12 (27.6%), maybe because of the degree of contamination. The most dominant bacterial species in each site were involved in $\alpha$-Proteobacteria (55.6%) in KSG1-12, $\gamma$-Proteobacteria (50.0%) in KSG1-16, $\beta$-Proteobacteria (66.7%) in KSG1-07, $\gamma$-Proteobacteria (54.5%) in KSG1-08 and $\beta$-Proteobacteria (36.4%) in KSG1-13. These results indicate that the microbial community structure might be changed according to the flow of leachate in grounderwater, implying changes in concentrations of pollutants, available electron accepters and/or other environmental conditions.