• Title/Summary/Keyword: 환상공간 간격

Search Result 5, Processing Time 0.021 seconds

Effect of Orientation on Pool Boiling Heat Transfer in Annulus with Small Gap (경사각이 좁은 틈새를 가지는 환상공간 내부 풀비등 열전달에 미치는 영향)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.3
    • /
    • pp.237-244
    • /
    • 2011
  • An experimental study was carried out to investigate the effect of the inclination angle on the nucleate pool boiling of saturated water at atmospheric pressure. We considered an annulus with a gap of 5 mm and a bottom opening. The inner tube of the annulus was heated, and the outer diameter and the length of the tube were 25.4 mm and 500 mm, respectively. The inclination angle was varied from horizontal to vertical. The results were compared to those for an annulus with a larger gap and a single tube. In the small-gap annulus, the effect of the inclination angle on the heat transfer was not significant. However, an early onset of the critical heat flux was observed at 80 kW/$m^2$ when the annulus was horizontal. Liquid agitation and bubble coalescence were considered to be the major heat-transfer mechanisms.

Pool Boiling Heat Transfer in a Vertical Annulus with a Longer Outside Tube (외부 튜브 길이가 긴 수직 환상공간 내부의 풀비등 열전달)

  • Kang, Myeong-Gie
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.8
    • /
    • pp.775-782
    • /
    • 2012
  • To investigate pool boiling heat transfer in a vertical annulus with closed bottoms, the length of an outer tube was varied between 0.3 and 0.6 m. For the test, a heated tube of 0.2-m length and 19.1-mm diameter and water at atmospheric pressure were used. To elucidate the effects of the outer tube length on heat transfer, the results for the annulus were compared with data for a single unrestricted tube. The increase in the outer tube length resulted in an increase or decrease in heat transfer depending on the gap size. This tendency is mainly attributed to the difference in the intensity of liquid agitation.

A Theoretical Study of Natural Convection in the Anmuli between Two Horizontal Elliptic Cylinders with Uniform Gap (간격이 균일한 수평타원 환상공간에서의 자연대류에 관한 이론적 연구)

  • 이재순;서정일
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.4
    • /
    • pp.351-359
    • /
    • 1984
  • 본 연구에서는 열전달계수의 이와같은 변수의 영향에 대하여 연구하였다. 그리고 이론적 연구가 수행되지 않는 기하학적 형태에 대한 열전달 계수의 Rayleigh수 와 간격비 및 Prandtl수에 관한 간단한 상관관계식을 제시하였다.

Conjugate Heat Transfer in Cylindrical Annulus for an Insulated Tube (단열관을 위한 원통 환상공간 내에서의 복합 열전달)

  • Kang, B.H.;Yang, S.H.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.7 no.4
    • /
    • pp.633-641
    • /
    • 1995
  • The effect of the gap width on conjugate heat transfer in the cylindrical annulus for an insulated tube has been studied numerically by the finite difference method. The parameters considered here are the Rayleigh number, Ra, the dimensionless insulated wall thickness, $W/D_i$ and the dimensionless gap width, S/W. As S/W increases, the mean wall temperature increases at the inside wall of annulus and decreases at the outside walls of annulus and the insulated tube at $S/W{\leq}0.5$, and then slightly increases at $Re=10^4$, $W/D_i=1.47$. The heat transfer rate decreases at $S/W{\leq}0.5$ and then increases apparently as S/W increases at $Re=10^4$, W/Df=1.47. Therefore, it is considered that $$S/W{\sim_=}0.5$$ is the optimum gap width for the effect of insulation at $Re=10^4$, $W/D_f=1.47$.

  • PDF

A Numerical and Experimental Study of Natural Convection in the Annulus between Horizontal Non-Circular Cylinders with a Uniform Gap (균일한 간격을 가진 비원형환상공간에서의 자연대류에 관한 수치해석 및 실험적 연구)

  • Bai, D.S.;Kwon, S.S.
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.2 no.4
    • /
    • pp.257-267
    • /
    • 1990
  • A numerical and experimental investigation has been carried out to understand a characteristic of natural convection within a horizontal non-circular annulus. A finite-difference method has been used to solve the governing equations numerically. The effect of Rayleigh number. Prandtl number, aspect ratio and diameter ratio is studied analytically. The ranges of the parameters studied herein are Rayleigh number from $10^3$ to $2{\times}10^4$, Prandtl number from 0.1 to 10, aspect ratio from 0.25 to 1.5 and diameter ratio from 1.5 to 9.0. A Mach-Zehnder interferometer is used to obtain isothermal fringes for a diameter ratio Do/Di=2.6 and aspect ratio H/L=0.75 experimentally. A comparison between the experimental and numerical results under similar conditions shows good agreement.

  • PDF