• Title/Summary/Keyword: 환경예측

Search Result 7,731, Processing Time 0.039 seconds

Generation and Combination of Rainfall Ensemble using Artificial Neural Network Model (인공신경망 모형을 활용한 강우 앙상블 생성 및 조합)

  • Kim, Taereem;Shin, Ju-Young;Joo, Kyungwon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2018.05a
    • /
    • pp.497-497
    • /
    • 2018
  • 복잡한 기상조건 하에서 강우의 예측은 수문 기상 분야에서 필수적인 과정이라 할 수 있다. 특히 월 단위의 강우 예측은 장기적인 수자원 관리 및 계획 수립 시 매우 중요한 기준이 되기 때문에 보다 정확하고 신뢰도 있는 예측을 필요로 하고 있다. 이를 위해 전 지구적 기후 변동의 양상을 수치화 하여 나타낼 수 있는 기상인자의 활용이 활발해지고 있으며 다양한 모형을 기반으로 한 강우 예측이 수행되고 있다. 최근에는 인공지능 기법을 활용한 인공신경망 모형의 적용이 활발해짐에 따라 높은 예측력을 바탕으로 강우 예측에 대한 연구가 이루어지고 있지만 초기 가중치의 무작위성 또는 과적합으로 인한 문제도 함께 나타나고 있다. 본 연구에서는 인공신경망 모형의 활용성을 높이고 신뢰성을 확보하기 위한 강우 예측을 수행하고자 하였다. 이를 위해 다양한 기상인자를 활용하여 인공신경망 모형을 위한 정보를 구축하고 인공신경망 모형을 통해 생성되는 결과로부터 단일 예측이 아닌 앙상블 예측을 활용함으로써 강우 앙상블을 생성하고 조합하였다. 그 결과 인공신경망 모형을 통한 단일 예측보다 앙상블을 통한 예측으로 안정적이고 정확한 예측 결과를 산정할 수 있었으며 기존에 인공신경망 모형을 통한 예측의 문제점을 보완할 수 있었다.

  • PDF

Development of road traffic air diffusion simulation system using GUI (GUI를 이용한 도로교통 대기확산 예측 시스템의 개발)

  • 오은주;이화운;김유근
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.285-286
    • /
    • 2002
  • 자동차의 주행에 의한 이산화질소(또는 부유 입자성 물질)의 환경영향평가는 인간의 건강과 생활환경의 보전의 관점에서 주거 등을 대상으로 하고 있다. 조사는 예측에 필요한 background 농도의 설정을 위해 현 상태의 농도파악과 예측에 사용되는 기상data의 설정을 목적으로 하며, plume식 및 puff식을 사용하여 이산화질소(또는 부유 입자성 물질)의 연평균을 예측한다. 예측결과로부터, 환경영향이 없거나 삭은 경우로 판단되지 않는 경우에 환경보전조치를 검토한다. 이러한 예측을 보다 손쉽게 하기 위해서 본 시스템을 개발하였다. (중략)

  • PDF

Evaluation of the predictive performance for monthly precipitation of a deep learning model for drought forecasting (가뭄 예보를 위한 딥러닝 모델의 월 강수량 예측 성능 평가)

  • Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.304-304
    • /
    • 2022
  • 가뭄은 인간 활동과 생태계의 다양한 측면에 영향을 미치는 중요한 자연재해 중 하나이다. 가뭄을 사전에 예측하여 필요한 완화 조치를 취하고 환경적 피해를 줄이는 것이 중요하다. 이에 따라 다양한 인공지능 기술을 이용한 가뭄 예측은 수문학, 수자원 관리, 농업 등의 분야에서 중요성이 커지고 있다. 최근에는 딥러닝 알고리즘을 기반으로 하는 중장기 강수예보를 위한 다양한 방법이 제시되고 있다. 이 논문의 목적은 가뭄 예보를 목적으로 월 강수량 예측을 위한 딥러닝 모델의 성능을 평가하는 것이다. 이를 위해 딥러닝 모델인 LSTM(Long Short-Term Memory)을 적용하였으며, 1981-2020년 기간의 월 강수 자료가 모델을 구축하기 위해 사용되었다. 관측자료를 기반으로 학습된 모델을 이용하여 테스트 기간에 대해 월 강수량을 예측하였다. 예측된 강수량을 통해 표준강수지수(Standardized Precipitation Index, SPI)을 산정하고, 예측 정확도를 분석하였다. 이 연구는 가뭄 예보를 위한 딥러닝 모델의 적용 가능성을 보여준다.

  • PDF

Evaluation of multi-basin integrated learning method of LSTM for hydrological time series prediction (수문 시계열 예측을 위한 LSTM의 다지점 통합 학습 방안 평가)

  • Choi, Jeonghyeon;Won, Jeongeun;Jung, Haeun;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.366-366
    • /
    • 2022
  • 유역의 하천유량과 같은 수문 시계열을 모의 또는 예측하기 위한 수문 모델링에서 최근 기계 학습 방법을 활용한 연구가 활발하게 적용되고 있는 추세이다. 이러한 데이터 기반 모델링 접근법은 입출력 자료에서 관찰된 패턴을 학습하며, 특히, 장단기기억(Long Short-Term Memory, LSTM) 네트워크는 많은 연구에서 수문 시계열 예측에 대한 적용성이 검증되었으나, 장기간의 고품질 관측자료를 활용할 때 더 나은 예측성능을 보인다. 그러나 우리나라의 경우 장기간 관측된 고품질의 하천유량 자료를 확보하기 어려운 실정이다. 따라서 본 연구에서는 LSTM 네트워크의 학습 시 가용한 모든 유역의 자료를 통합하여 학습시켰을 때 하천유량 예측성능을 개선할 수 있는지 판단해보고자 하였다. 이를 위해, 우리나라 13개 댐 유역을 대상으로 대상 유역의 자료만을 학습한 모델의 예측성능과 모든 유역의 자료를 학습한 모델의 예측성능을 비교해 보았다. 학습은 2001년부터 2010년까지 기상자료(강우, 최저·최고·평균기온, 상대습도, 이슬점, 풍속, 잠재증발산)를 이용하였으며, 2011년부터 2020년에 대해 테스트 되었다. 다지점 통합학습을 통해 테스트 기간에 대해 예측된 각 유역의 일 하천유량의 KGE 중앙값이 0.74로 단일지점 학습을 통해 예측된 KGE(0.72)보다 다소 개선된 결과를 보여주었다. 다지점 통합학습이 하천유량 예측에 큰 개선을 달성하지는 못하였으며, 추가적인 가용 자료 확보와 LSTM 구성의 개선을 통해 추가적인 연구가 필요할 것으로 판단된다.

  • PDF

Uncertainty of the operational models in the Nakdong River mouth (낙동강 하구 환경변화 예측모형의 불확실성)

  • Cho, Hong Yeon;Lee, Gi Seop
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.4-4
    • /
    • 2022
  • 낙동강 하구 환경/생태 복원을 위하여 "해수유입"으로 하구환경을 조성하는 사업이 추진되고 있으며, 해수 유입 규모와 빈도에 따른 생태환경변화를 예측하는 연구수요가 증가하고 있는 상황이다. 보다 구체적으로는 단기간의 해수유입에 의한 흐름 및 염분 확산범위 예측과 더불어 보다 장기간의 지형변화, 수질환경 변화, 생태환경 변화 등에 대한 예측이 필요한 상황이다. 그리고 그 예측의 대부분을 수치모델에 크게 의존하고 있는 상황이다. 그러나, 수치모형을 이용한 단기 예측은 가까운 미래에 대한 입력조건을 사용하여야 하기 때문에 입력조건에 대한 불확실성이 포함되고, 환경생태모형의 불확실성에 따른 예측 한계 등으로 인하여 오차가 누적되기 때문에 직접적인 활용에 크게 제한이 따를 수 있다. 또한 운영과정에서 어떤 분산, 편향 오차 등이 지속적으로 발생하는 경우, 모델 예측 결과에 대한 신뢰수준이 크게 감소하기 때문에 모델의 적절한 운영기법이 요구된다. 모델은 관심을 가지는 자연현상에 대한 근사(approximation)이고, 예상하지 못한 오차가 발생할 수 있기 때문에 관측 자료를 이용한 자료동화(data assimilation) 과정이 운영모델에서는 필수적인 부분이다. 이론적인 기반이 탄탄한 유체역학 기반 기상예측의 경우에도, 가용한 모든 지점의 관측 자료를 이용한 자료 동화과정을 통하여 모델 예측 결과를 개선하여 나가는 과정을 포함하여 운영하고 있다. 이 과정이 포함하는 중요한 개념은 수치모델이 가지고 있는 (예측 수준의) 한계를 인정하고, 수치모델에 전적으로 의존하는 것이 아니라 관측 자료를 이용하여 그 한계를 저감하여 나가는 과정이다. 모니터링은 모델의 한계를 알려주는 지표이다. 모델링과 모니터링의 불가피한 상호의존 관계를 의미하는 이 개념은 단기간의 흐름, 염분 확산 예측으로 한정되지 않고, 장기적인 변화가 예상되는 생태환경변화 모델에도 적용이 된다. 즉각적인 변화보다는 장기적인 관점에서 파악하여야 하는 생태학적인 변화는 보다 다양한 인자가 관여하기 때문에 어떤 측면에서는 모델보다는 적절한 빈도와 항목에 대한 관측계획 수립(monitoring design)이 더 중요하다고 할 수 있다. 이론적인 질량보존(mass conservation) 방정식을 기반으로 하는 모델은 다양한 현실적인 인자의 영향을 받기 때문에 모델의 한계를 인정하고, 모니터링 자료를 적극적으로 활용하여 불확실성을 저감하는 접근방식이 요구된다.

  • PDF

Application of road noise prediction model(2D, 3D) (도로소음 예측모델(2D, 3D)이용 방안)

  • Choung, TaeRyang;Cho, Jaechang;Kang, Yeongsik;Seo, Chungyoul;Park, Youngmin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.856-857
    • /
    • 2014
  • 국내에서 이용되는 예측모델은 국립환경과학원식, 도로공사의 HW-NOISE, KHTN, 소음지도에 이용되는 외국의 RLS90, NMPB 등이 있다. 이러한 예측모델은 예측 방법 및 표현에 따라 예측식 2D(국립환경과학원식, HW-NOISE)와 3D로 예측(KHTN, RLS90, NMPB 등)으로 구분할 수 있다. 본 연구는 도로 주변 공동주택에서의 소음실측 및 예측식별 예측값을 통하여 예측식의 오차 및 오차의 원인을 분석하고 예측식의 적용방법에 대하여 고찰하였다.

  • PDF

Development of a Multi -purpose Environment Prediction Model for Plant Production System (1) Construction of a Basic Model using PCSMP (식물생산시스템의 다목적 환경예측모델의 개발(1) PCSMP를 이용한 기본모델 구축)

  • 손정익;김문기;남상운
    • Proceedings of the Korean Society for Bio-Environment Control Conference
    • /
    • 1993.05a
    • /
    • pp.14-15
    • /
    • 1993
  • 최근, 식물생산시설의 집중화, 첨단화, 대규모화의 추세속에서 최적생산을 위한 환경제어가 필요로 되고 있고, 이를 위해서는 시설내의 환경예측이 필수불가결하다. 그러나 현재까지 식물생산시설의 환경예측에 관련된 많은 모델들이 개발되어 있지만 각 모델들은 독자적 목적을 가진 경우가 많기 때문에 목적과 환경조건이 상이한 시스템에서는 수정 및 보완을 하지 않으면 적용 불가능하였다. 따라서 효율적인 환경설계를 위하여 시설내의 환경을 수치적으로 예측하고 평가할 수 있는 다목적 환경예측모델의 개발이 필요하다. (중략)

  • PDF

Development of ensemble weighting technique for sequential forecasted rainfall to extend forecast precedence time (예측 선행시간 확장을 위한 순차적 예측강우 가중평균 앙상블 생성기법 개발)

  • Na, Wooyoung;Kang, Minseok;Kim, Gildo;Lee, Hyunwook;Yoo, Chulsang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2019.05a
    • /
    • pp.59-59
    • /
    • 2019
  • 최근 기후변화로 인해 대류성 집중호우가 빈번하게 발생하고 있으며, 이러한 강우 특성은 산지지역에 위치한 소하천유역에 상당한 피해를 야기한다. 대류성 집중호우는 규모가 작고 속도가 빠르기 때문에 중규모 이상의 유역에서 부분적으로 상이한 강우특성을 보인다. 아울러 이러한 호우패턴의 변화는 일시적인 현상이 아닌 하나의 기상 특성으로 자리를 잡아가고 있기 때문에 이에 대한 대책마련이 더욱 필요한 실정이다. 돌발홍수 예경보시스템에 예측강우 자료는 예측 선행시간의 한계를 가진다. 즉, 예측강우 자료자체가 가지는 편의와 불확실성으로 인해 예측 선행시간이 3시간을 초과하면 신뢰도가 급격히 하락하게 된다. 이를 해결하기 위해 우리나라에서는 지상관측치와의 편의를 보정하거나 예측강우자료 자체의 품질을 개선하려는 노력을 지속하고 있다. 본 연구에서는 예측 선행시간을 확장하고자 순차적으로 생산되는 예측강우를 가중평균하여 앙상블 예측치를 모의하는 기법을 개발하였다. 각 선행시간별 예측강우자료를 앙상블 멤버로 인식하여 이들의 공분산 구조를 파악하고, 분산과 공분산 수치를 이용하여 가중치를 결정하였다. 1, 2, 3시간 예측 선행시간에 대한 확장 가능성을 확인하고자 하였고, 최적의 앙상블 멤버 개수를 결정하여 적용 및 평가하였다. 본 연구에서는 2016년과 2017년에 발생한 주요 호우사상을 선정하고, 우리나라 전역에 걸쳐 예측강우 앙상블 생성 방법론을 적용하였다. 그 결과, 가중평균 앙상블의 예측치가 예측강우장 1개, 단순평균 앙상블 예측치에 비해 좋은 품질의 예측 성능을 보였으며, 예측치의 분산 또한 감소하여 예측에 대한 불확실성이 줄어듦을 확인하였다.

  • PDF

자율운항선박 지원을 위한 실시간 관측 기반의 해양환경 인공지능 예측기술 검증

  • 엄대용;박보슬;이방희
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.172-173
    • /
    • 2022
  • 자율운항선박 등 스마트선박에서 항로상의 해양환경 상태를 관측·예측하는 과정은 필수요소이며 선박 통신을 고려했을 때 선박자체에서 취득할 수 있는 정보만을 이용하여 의사결정이 가능하도록 해양환경 정보를 생산하는 기술이 필요하다. 이에 본 연구는 짧은 시간 내에 해상 변화를 예측할 수 있는 인공지능(딥러닝)기반의 예측기법을 개발하였다.

  • PDF

Development and Evaluation of Flood Prediction Models Using Artificial Intelligence Techniques (인공지능 기법을 활용한 홍수예측모델 개발 및 평가 - 한강수계 댐을 중심으로 -)

  • Cho, Hemie;Uranchimeg, Sumiya;Yoo, Je-Ho;Kwon, Hyun-Han
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.131-131
    • /
    • 2022
  • 기후변화의 영향으로 극치강우의 변동성이 커지고 있으며 계획빈도를 초과하는 폭우로 피해가 증가하고 있다. 기존의 물리기반의 홍수예측모델은 개념적 및 구조적 제약과 함께 다양한 유역조건 및 수문기상 조건에 기인한 강우-유출 관계의 불확실성을 고려하는 데 한계가 있다. 특히 한정된 홍수 사상을 통해 구축된 관측 자료로 인해 새로운 홍수 사상 예측 능력이 저조할 수밖에 없다. 따라서 기존 물리모형 기반의 홍수예측과 함께, 딥러닝(deep learning) 모형을 고려한 홍수예측 모델 개발과 개선이 필요하다. 본 연구에서는 다양한 분야에서 활용되는 인공지능(artificial intelligence, AI) 기술을 종합적으로 검토하고, 홍수 예측 측면에서의 활용 가능성 및 신뢰성을 고려하여 AI 기법을 채택하였다. 한강수계에 존재하는 댐 중 일부를 선정하여 대상 댐의 수문·기상학적 자료를 전처리한 후, 인공지능 기반의 홍수예측모형을 구축 및 최적화하였다. 다양한 예측인자와 모델 구성으로 홍수예측력에 대한 평가를 다각적으로 수행함으로써 홍수예측모델의 신뢰성을 제고하였다. 전반적으로 우수한 결과를 도출하였고, 유역면적이 작을수록 결과가 좋았다. 이는 넓은 유역일수록 복잡한 강우-유출 과정이 내재되어 있기 때문으로 판단되며, 넓은 유역에는 본 연구에서 활용한 자료에 추가적인 자료를 도입하여 모형 개선이 이루어져야 할 것으로 판단하였다. 수문 예측 연구에 통계모형이나 기계학습모형의 적용은 많이 있었지만, 딥러닝 기법 활용은 새로운 시도라는 점에서 의미가 있다.

  • PDF