• Title/Summary/Keyword: 환경건축

Search Result 4,162, Processing Time 0.027 seconds

The Development of Performance Evaluation Program of Building Integrated Photovoltaic System (건물일체형 태양광발전 시스템 성능평가 프로그램 개발)

  • Kim, Beob-Jeon;Park, Jae-Wan;Yoon, Jong-Ho;Shin, U-Cheul
    • KIEAE Journal
    • /
    • v.15 no.4
    • /
    • pp.85-90
    • /
    • 2015
  • Purpose: In design and planning Building Integrated Photovoltaic(BIPV) system can reduce cost by replacing building facade as construction material such as roofs, outer walls and windows as well as generating electricity. BIPV system should be applied at the early stage of architectural design. However, it is hard to decide whether using BIPV system or not for architects and builders who are not professional at BIPV system because performance of system is considerably influenced by types of module, installation position, installation methods and so on. It is also hard for experts because commercialized analytical program of photovoltaic systems is too complicated to use and domestic meteorological data is limited to partial areas. Therefore, we need evaluation program of BIPV system which can easily but accurately interpret generating performance and evaluate validity of BIPV system at the early stage of architectural design even for inexpert. Method: In this study, we collected meteorological data of domestic major region and analyzed generation characteristic of BIPV system by using PVsyst(commercialized software) in accordance with regions, types of solar module, place and methods of installation and so on. Based on this data, we developed performance evaluation program of BIPV system named BIPV-Pro, through multiple regression analysis and evaluated its validity. Result: When comparing predictive value of annual average PR and annual electricity production of BIPV-Pro an that of PVsyst, each of root mean square error was 0.01897 and 123.9.

Development of Impact Table and optimum combination dedication module for green-remodeling advance business value assessment

  • Choi, Jun-Woo;Kim, Gyoung-Rok;Ko, Jung-Lim;Shin, Jee-Woong;Lee, Keon-Ho
    • KIEAE Journal
    • /
    • v.16 no.3
    • /
    • pp.5-12
    • /
    • 2016
  • Purpose: In case of existing building, A lot of attempts are being made like changing thermal system or using high efficiency products to decrease energy load and increase energy efficiency. However, (1) Absence of systemed database of green-remodeling technology and products. (2) Absence of comparative analysis system and qualitative/quantitative evaluation method of energy performance and energy reduction cost. (3) Existing remodeling was very hard to access for non-experts. So, in this paper, the authors developed data base for green-remodeling(Impact Table A, Impact Table B) and optimum combination dedication tool for user convenience. Accordingly, purpose of this paper validate usefulness of Impact Table and optimum alternative dedication tool. Method: For validate the usefulness of Impact Table and optimum combination dedication tool, the authors selected five test model office buildings. Next, through research investigation, the authors diagnosed the present state of buildings. In base of diagnosis results, select technologies for remodeling by qualitative comparison (Impact Table A). Next, evaluate quantitative price and performance technologies that selected in Impact Table A (Impact Table B). Lastly, through final evaluation of Impact Taba A and Impact Table B, determine the direction of the green-remodeling. Result: Impact Table and optimum combination dedication tool can use relative indicator for green-remodeling, especially through ROI by detail field.

A study on Actual Conditions Analysis for Regeneration of High-rise and High-density Apartment in the 1st period New Town (1기 신도시 고층고밀 아파트단지의 재생을 위한 개발현황 분석에 관한 연구 - 분당신도시를 중심으로 -)

  • Cho, Sung Heui;Lee, Tae Kyung;Oh, Deog Seong
    • KIEAE Journal
    • /
    • v.9 no.2
    • /
    • pp.17-26
    • /
    • 2009
  • High-rise and high-density apartment complexes have been built and supplied on a large scale in the 1st period New Town of metropolitan areas since the late 1980s. Recently it has become necessary to improve those apartment complexes which have blight problems for aging more than about 20 years accompanying simultaneity and a large scale. The purpose of this study is to analyze actual conditions of high-rise and high-density apartments in a view of sustainable regeneration. The contents and methods of this study are as follows. First, the concept of high-rise and high-density in domestic apartment developments were identified through review of literature and the law. Second, development conditions of Bundang new town and 1st period new town were studied. Third, the evelopment conditions of high-rise and high-density apartments in cases of 6 apartment complexes were analyzed from points of view of sustainable development by literature review and a field study. The results of this study are as follows. First, high-density range in domestic apartments can be conceptualized as 600 persons/ha. High-rise range in domestic apartments can be onceptualized as more than 11 stories under 30 stories. Second, characteristics and subjects based on actual conditions analysis could suggest on physio-environmental aspect and socio-economic aspect. Major characteristics and subjects of the physio-environmental aspect were 1.satisfaction of convenient facilities and public transportation service, 2.shortage of parking space, 3.uniform & blight of community facilities, 4.uniformed building layout, and 5.uniform pattern of unit plan and low flexibility by the bearing wall structure. And those of the socio-economical aspect were 1.satisfaction of current community, 2.increase and diversity of needs of the elderly by socio-demography change, 3.improvement of size and method of apartment complex development and 4.raising of economic-sufficiency.

A Multiplex Housing Energy Conservation Strategy through Combining Insulation Standard Based Green Roof Systems and Passive Design Elements

  • Son, Hyeongmin;Park, Dong Yoon;Chang, Seongju
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.31-38
    • /
    • 2014
  • Recently, the coverage of urban forests has been rapidly decreasing as the cities are created and expanding. Consequently, there arise urban problems such as heat island effect, urban flooding, urban desertification and so on. In this context, green roof systems is considered to be an efficient alternative to deal with these problems. However, it is difficult to apply green roof to new buildings since the majority of the buildings in cities are already constructed and the demand for new building constructions is not high enough. Therefore, it should be considered to apply green roof system to existing buildings for resolving various problems. This study evaluates heating and cooling energy consumption based on the combination of passive design factors such as wall, roof, window insulation in addition to a green roof system applied to an existing house by using an energy simulation program. Total 8 potential improvement cases are developed. Each case is applied to the same house with different insulation standard for simulations. Through the analysis of the simulated cases with the chosen test house, it is confirmed that heating energy consumption decreases as improvement cases are applied, but cooling energy consumption is relatively not much affected by each improvement case. In addition, when each improvement case is applied to already highly insulated house, the effect of thermal energy improvement decreases while the same improvement that is applied to the case with low insulated house tends to yield higher improvement rate.

The Effects of Illuminance and Correlated Color Temperature on Visual Comfort of Occupants' Behavior

  • Yoon, Gyu Hyon;Kim, Jeong Tai
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.23-30
    • /
    • 2014
  • The preferred illumination environment in accordance with the actions taken by the occupants of the rooms in residences differs significantly between different cultures and circumstances in and out of the country. In this regard, the purpose of this study is to evaluate the visual performance of various illumination environments in residential spaces by allowing the participants of the experiments to select the kind of illumination environment they prefer as the occupants of the room. For this purpose, we prepared a mock-up residential space of $6.2m{\times}4.5m{\times}2.5m$, where the experiments for this study were conducted. Then, three illuminance settings (30lx, 100lx, and 150lx) and three color temperature settings (2700k, 4000k, and 6500k) were selected as the properties of the physical environment where the tests were to be conducted. The survey was conducted with 30 study subjects, with whom the level of visual comfort and the lighting adjustment evaluation by different activities were carried out. The level of visual comfort in lighting in a residential context turned to be more influenced by the color temperature and illuminance compared to other factors. Except for the test item, 'comfort,' all test items showed positive reactions when the illuminance was 150lx, which was rather light. In 'comfort,' the test subjects appeared to prefer warm color temperature of 2700k. As we allowed the occupants to adjust the lighting environment in accordance with the conditions of the subjects and the activities they performed, the subjects regarded 150lx - 4000k setting as comfortable, while they preferred 150lx-5400k configuration for working. In case of resting, the subject answered that the configuration of 30lx -2700k setting to be visually comfortable.

The Visual Performance Evaluation of the Work planes with the Automated blind Control in Small Office Spaces

  • Park, Doo-Yong;Yoon, Kap-Chun;Kim, Kang-Soo
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.15-22
    • /
    • 2014
  • Among the various building envelope elements, the glass area takes up the largest portion in the office building design. However, a large area of glass can cause problems such as excessive solar radiation, thermal comfort, and glare. Thus it is important to install the glass area to an appropriate level, and control solar radiation and inflow of daylight with blind devices. This study aims to improve the visual performance of the work plane through the automatic control of the venetian blinds. A total of eight kinds of control strategies were chosen; Case 1 does not control the blinds, Case 2 with the blind slats fixed at the angle of 0 degree, Case 3 to 6 using the existing blind control programs, and Case 7 and 8 with improved blind control. Case 3 with 90 degrees had the best energy performance, but the average indoor illuminance was 113lux, which is below the standards. Cases 4 and 5 showed higher levels of interior daylight illuminance with the average of 281lux and 403lux respectively. However, the fixed angles may have difficulties controlling excessive direct sunlight coming into the room and may cause glare. Cases 6 and 7 used sun tracking angle control and cut-off angle control, and the average interior illuminance was measured 250lux and 385lux respectively. Case 8 used the cut-off angle control in an hourly manner, satisfying the standard illuminance of 400lux with an average interior illuminance of 561lux. It was evaluated to be the best method to control direct solar radiation and to guarantee proper level of interior illumination.

A Study on the Potential of CO2 Emissions Reduction Recycled Aggregate according to Transportation Plan of Waste Concrete - Focused on Daegu City and Kyungpook Area - (폐콘크리트의 수송계획에 따른 순환골재의 CO2 배출량 저감 가능성에 관한 연구 - 대구·경북지역을 중심으로 -)

  • Kim, Tae Hyun;Cha, Gi Wook;Hong, Won Hwa
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.131-138
    • /
    • 2014
  • The recent interests in securing alternative resource have increased due to environmental issues and exhaustion of natural resources. The government notices production of recycled aggregate using waste concrete as the substitute of the natural aggregate. However, It's important to reduce environmental burden being inevitably made in the process producing recycled aggregate. In this study, the scenarios of transportation distance were set in the transportation phase of production of recycled aggregate. In addition, The possibility of emissions and reduction of carbon dioxide were studied depending on the scenarios. For this study, data about a amount of waste concrete, transportation distance, kind of vehicle, the number of required vehicle, fuel efficiency of vehicle and etc were gathered from 15 companies of intermediate treatment and 60 constructions sites located in Daegu city and Kyungpook area. Based on those data, fuel consumptions and $CO_2$ emissions according to the transportation scheme of waste concrete were calculated. As a result of the study, the emission of carbon dioxide was possible to be reduced by 27.8~75.4% depending on the scenarios of transportation distance.

Annual energy yield prediction of building added PV system depending on the installation angle and the location in Korea (건물적용 태양광발전시스템의 국내 지역에 따른 설치각도별 연간 전력생산량 예측에 관한 연구)

  • Kim, Dong Su;Shin, U Cheol;Yoon, Jong Ho
    • KIEAE Journal
    • /
    • v.14 no.1
    • /
    • pp.67-74
    • /
    • 2014
  • There have distinctly been no the installation criteria and maintenance management of BIPV systems, although the BIPV market is consistently going on increasing. In addition, consideration of the BIPV generation quantity which has been installed at several diverse places is currently almost behind within region in Korea. Therefore, the main aim of this study is to evaluate the BIPV generation and to be base data of reducing rate depending on regional installation angles using PVpro which was verified by measured data. Various conditions were an angle of inclination and azimuth under six major cities: Seoul, Daejeon, Daegu, Busan, Gwangju, Jeju-si for the BIPV system generation analysis. As the results, Seoul showed the lowest BIPV generation: 1,054kWh/kWp.year, and Jeju-si have 5percent more generation: 1,108.0kWh/kWp.year than Seoul on horizontal plane. Gwangju and Daejeon turned out to have similar generation of result, and Busan showed the highest generation: 1,193.5kWh/kWp.year, which was increased by over 13percent from Seoul on horizontal plane. Another result, decreasing rate of BIPV generation depending on regional included angle indicate that the best position was located on azimuth: $0^{\circ}$(The south side) following the horizontal position(an angle of inclination: $30^{\circ}$). And the direction on a south vertical position(azimuth: $0^{\circ}$, an angle of inclination: $90^{\circ}$) then turned out reducing rate about 40percent compared with the best one. Therefore, these results would be used to identify the installation angle of the BIPV module as an appropriate position.

Temperature Monitoring of Vegetation Models for the Extensive Green Roof (관리조방형 옥상녹화의 식재모델별 표면온도 모니터링)

  • Youn, Hee-Jung;Jang, Seong-Wan;Lee, Eun-Heui
    • KIEAE Journal
    • /
    • v.13 no.5
    • /
    • pp.89-96
    • /
    • 2013
  • Green roofs can reduce surface water runoff, provide a habitat for wildlife moderate the urban heat island effect, improve building insulation and energy efficiency, improve the air quality, create aesthetic and amenity value, and preserve the roof's waterproofing. Green roofs are mainly divided into three types : intensive, simple-intensive, and extensive. Especially, extensive roof environment is a harsh one for plant growth; limited water availability, wide temperature fluctuations, high exposure to wind and solar radiation create highly stressed environment. This study, aimed at extensive green roof, was carried out on the rooftop of the library at Seoul Women's Univ. from October to November, 2012 and from March to August, 2013. To suggest the most effective vegetation model for biodiversity and heat island mitigation, surface temperatures were monitored by each vegetation model. We found that herbaceous plants of Aster sphathulifolius, Aceriphyllum rossii and Belamcanda chinensis, shrub of Syringa patula 'Miss Kim', Thymus quinquecostatus var. japonica, Sedum species can mixing each other. Among them, the vegetation models including Sedum takesimense, Aster sphathulifolius, Thymus quinquecostatus var. japonica was more effective on the surface temperature mitigation, because the species have the tolerance and high ratio of covering, and also in water. Especially, in the treatment of bark mulching, they helped to increase the temperature of vegetation models. In the case of summer, temperature mitigation of vegetation models were no significant difference among vegetation types. Compared to surface temperature of June, July and August were apparent impact of temperature mitigation, it shows that temperature mitigation are strongly influenced by substrate water content.

Analysis of Energy Saving Rate of Office Buildings According to the Items of an EPI Machine Part (에너지 성능지표 기계부문 항목에 따른 업무용 건물의 에너지 절감율 분석)

  • Lee, Ho Jin;Kim, Seo Hoon;Jung, Jae Uk;Jang, Cheol Yong;Song, Kyoo Dong
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.49-54
    • /
    • 2013
  • released by IEA, 2010, indicated that Korea's GDP, of 8 countries surveyed-Korea, Frans, Germany, Italy, Japan, the UK, the USA, and Australia-was the lowest, but the electric consumption per head was third, following America and Australia. Thus, our government has been striving to reduce energy usage and especially to lessen the energy used in buildings, proposing a variety of road maps such as 'building energy efficiency rating' and 'energy saving design standards of buildings'. Accordingly, this study investigated the effect of the items of machine part among EPI items on the energy saving rate. I measured energy usage by ECO2 program, for simulation program, that is used for the building energy efficiency rating. Result showed that items concerning control of pumps and fans had much more saving rate than the ones concerning efficiency of heater and cooler that had bigger scores assigned among EPI items. Result showed that items concerning control of pumps and fans had much more saving rate than the ones concerning efficiency of heater and cooler that had bigger scores assigned among EPI items. Therefore, I think that grades assigned to items in energy performance index need to be corrected.