• Title/Summary/Keyword: 환각 탐지

Search Result 3, Processing Time 0.017 seconds

Literature Review of AI Hallucination Research Since the Advent of ChatGPT: Focusing on Papers from arXiv (챗GPT 등장 이후 인공지능 환각 연구의 문헌 검토: 아카이브(arXiv)의 논문을 중심으로)

  • Park, Dae-Min;Lee, Han-Jong
    • Informatization Policy
    • /
    • v.31 no.2
    • /
    • pp.3-38
    • /
    • 2024
  • Hallucination is a significant barrier to the utilization of large-scale language models or multimodal models. In this study, we collected 654 computer science papers with "hallucination" in the abstract from arXiv from December 2022 to January 2024 following the advent of Chat GPT and conducted frequency analysis, knowledge network analysis, and literature review to explore the latest trends in hallucination research. The results showed that research in the fields of "Computation and Language," "Artificial Intelligence," "Computer Vision and Pattern Recognition," and "Machine Learning" were active. We then analyzed the research trends in the four major fields by focusing on the main authors and dividing them into data, hallucination detection, and hallucination mitigation. The main research trends included hallucination mitigation through supervised fine-tuning (SFT) and reinforcement learning with human feedback (RLHF), inference enhancement via "chain of thought" (CoT), and growing interest in hallucination mitigation within the domain of multimodal AI. This study provides insights into the latest developments in hallucination research through a technology-oriented literature review. This study is expected to help subsequent research in both engineering and humanities and social sciences fields by understanding the latest trends in hallucination research.

Removing object hallucination through a reviewing mechanism (객체 탐지 및 빔 서치를 이용한 영상 주석 환각 해결)

  • Ko, Jieun;Jung, Seungjun;Kim, Changick
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2019.06a
    • /
    • pp.243-245
    • /
    • 2019
  • 영상 주석 생성 기술은 주어진 영상에 대하여 최대한 자세히 묘사하는 문장을 생성하는 것을 목표로 한다. 따라서, 이 분야에서는 생성된 주석과 입력 영상 간의 연관성이 가장 중요하다. 영상 주석 생성과 관련된 최근 연구들은 영상 내에서 집중해야 될 후보 영역들을 먼저 추출한 뒤, 이들을 LSTM 디코더 등에 입력하여 주석을 생성한다. 비록, 최근에 제안된 방법들이 입력 영상과 매우 연관성 높은 주석들을 생성하지만, 아직 영상 안에 존재하지 않는 물체가 종종 생성된 주석에 포함되는 환각(Hallucination) 문제가 발생하고 있다. 본 논문에서는 이를 해결하기 위하여 Beam search를 이용하여 기존 방법들보다 더 정확한 여러 주석 후보 군을 생성한 뒤, 각각의 주석을 객체 검출기에서 나온 객체 후보군과 비교하는 방법을 제안한다. 우리는 제안한 방법을 최근에 제안된 주석 생성 기술에 접목한 결과, 환각 문제가 효과적으로 제거되는 것을 확인할 수 있었다. 또한, MS COCO 온라인 서버 제출을 통하여 주석 생성기술의 성능이 향상되는 것을 확인하였다.

  • PDF

KoCheckGPT: Korean LLM written document detector (KoCheckGPT: 한국어 초거대언어모델 작성 글 판별기)

  • Myunghoon Kang;Jungseob Lee;Seungyoon Lee;Seongtae Hong;Jeongbae Park;Heuiseok, Lim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.432-436
    • /
    • 2023
  • 초거대언어모델(LLM)의 도래에 따라 다양한 과업들이 도메인 관계 없이 제로샷으로 추론이 가능해짐에 따라서 LLM이 다양한 산업분야에 적용되고 있다. 대표적으로 ChatGPT와 GPT-4는 상용 API로 서비스를 제공하여 용이한 서비스 접근으로 다양한 이용층을 끌어들이고 있다. 그러나 현재 상용 API로 제공되고 있는 ChatGPT 및 GPT-4는 사용자의 대화 내역 데이터를 수집해 기업의 보안 문제를 야기할 수 있고 또한 생성된 결과물의 환각 문제로 인한 기업 문서의 신뢰성 저하를 초래할 수 있다. 특히 LLM 생성 글은 인간의 글과 유사한 수준으로 유창성을 확보한만큼 산업현장에서 LLM 작성 글이 판별되지 못할 경우 기업 활동에 큰 제약을 줄 수 있다. 그러나 현재 한국어 LLM 작성 글 탐지 서비스가 전무한 실정이다. 본 논문에서는 한국어 초거대언어모델 작성 글 판별기: KoCheckGPT 를 제안한다.KoCheckGPT는 산업현장에서 자주 사용되는 문어체, 개조식 글쓰기로 작성된 문서 도메인을 목표로 하여 글 전체와 문장 단위의 판별 정보를 결합하여 주어진 문서의 LLM 작성 여부를 효과적으로 판별한다. 다국어 LLM 작성 글 판별기 ZeroGPT와의 비교 실험 결과 KoCheckGPT는 우수한 한국어 LLM 작성 글 탐지 성능을 보였다.

  • PDF