• Title/Summary/Keyword: 확장된 부메랑 공격

Search Result 3, Processing Time 0.015 seconds

Amplified Boomerang Attack against Reduced-Round SHACAL (SHACAL의 축소 라운드에 대한 확장된 부메랑 공격)

  • 김종성;문덕재;이원일;홍석희;이상진
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.12 no.5
    • /
    • pp.87-93
    • /
    • 2002
  • SHACAL is based on the hash standard SHA-1 used in encryption mode, as a submission to NESSIE. SHACAL uses the XOR, modular addition operation and the functions of bit-by-bit manner. These operations and functions make the differential cryptanalysis difficult, i.e, we hardly find a long differential with high probability. But, we can find short differentials with high probability. Using this fact, we discuss the security of SHACAL against the amplified boomerang attack. We find a 36-step boomerang-distinguisher and present attacks on reduced-round SHACAL with various key sizes. We can attack 39-step with 256-bit key, and 47-step with 512-bit key.

Security Analysis of Block Cipher KT-64 (블록 암호 KT-64에 대한 안전성 분석)

  • Kang, Jin-Keon;Jeong, Ki-Tae;Lee, Chang-Hoon
    • The KIPS Transactions:PartC
    • /
    • v.19C no.1
    • /
    • pp.55-62
    • /
    • 2012
  • KT-64 is a 64-bit block cipher which use CSPNs suitable for the efficient FPGA implementation. In this paper, we propose a related-key amplified boomerang attack on the full-round KT-64. The attack on the full-round KT-64 requires $2^{45.5}$ related-key chosen plaintexts and $2^{65.17}$ KT-64 encryptions. This work is the first known cryptanalytic result on KT-64.

Security Analysis of Block Cipher MD-64 Suitable for Wireless Sensor Network Environments (무선 센서 네트워크 환경에 적합한 블록 암호 MD-64에 대한 안전성 분석)

  • Lee, Chang-Hoon
    • Journal of Advanced Navigation Technology
    • /
    • v.15 no.5
    • /
    • pp.865-870
    • /
    • 2011
  • MD-64 is a 64-bit block cipher suitable for the efficient implementation in hardware environments such as WSN. In this paper, we propose a related-key amplified boomerang attack on the full-round MD-64. The attack on the full-round MD-64 requires $2^{45.5}$ related-key chosen plaintexts and $2^{95}$ MD-64 encryptions. This work is the first known cryptanalytic result on MD-64.