• Title/Summary/Keyword: 확산농도

Search Result 1,153, Processing Time 0.031 seconds

COMPARISON OF FLUX AND RESIDENT CONCENTRATION BREAKTHROUGH CURVES IN STRUCTURED SOIL COLUMNS (구조토양에서의 침출수와 잔존수농도의 파과곡선에 관한 비교연구)

  • Kim, Dong-Ju
    • Journal of Korea Soil Environment Society
    • /
    • v.2 no.2
    • /
    • pp.81-94
    • /
    • 1997
  • In many solute transport studies, either flux or resident concentration has been used. Choice of the concentration mode was dependent on the monitoring device in solute displacement experiments. It has been accepted that no priority exists in the selection of concentration mode in the study of solute transport. It would be questionable, however, to accept the equivalency in the solute transport parameters between flux and resident concentrations in structured soils exhibiting preferential movement of solute. In this study, we investigate how they differ in the monitored breakthrough curves (BTCs) and transport parameters for a given boundary and flow condition by performing solute displacement experiments on a number of undisturbed soil columns. Both flux and resident concentrations have been simultaneously obtained by monitoring the effluent and resistance of the horizontally-positioned TDR probes. Two different solute transport models namely, convection-dispersion equation (CDE) and convective lognormal transfer function (CLT) models, were fitted to the observed breakthrough data in order to quantify the difference between two concentration modes. The study reveals that soil columns having relatively high flux densities exhibited great differences in the degree of peak concentration and travel time of peak between flux and resident concentrations. The peak concentration in flux mode was several times higher than that in resident one. Accordingly, the estimated parameters of flux mode differed greatly from those of resident mode and the difference was more pronounced in CDE than CLT model. Especially in CDE model, the parameters of flux mode were much higher than those of resident mode. This was mainly due to the bypassing of solute through soil macropores and failure of the equilibrium CDE model to adequate description of solute transport in studied soils. In the domain of the relationship between the ratio of hydrodynamic dispersion to molecular diffusion and the peclet number, both concentrations fall on a zone of predominant mechanical dispersion. However, it appears that more molecular diffusion contributes to the solute spreading in the matrix region than the macropore region due to the nonliearity present in the pore water velocity and dispersion coefficient relationship.

  • PDF

Counter-diffusion of Aromatic Compounds in Catalyst Supports (촉매담체내에서 방향족 화합물의 역확산)

  • Chung, Kyeong-Hwan;Seo, Gon
    • Applied Chemistry for Engineering
    • /
    • v.10 no.4
    • /
    • pp.608-614
    • /
    • 1999
  • The counter-diffusion of aromatic compounds such as coronene and tetra-phenylporphine by injection of acetone or tetra-phenylporphine solution was studied on aluminas and silica-alumina used widely as catalysts support. The counter-diffusivity was determined from simulation results by using the counter-diffusion model employing ideal adsorbed solution theory. The counter-diffusivities of aromatic compounds in the catalyst supports were ranged in ${\sim}10^{-15}m^2/sec$ in the desorption process by the injection of excess acetone. In the counter-diffusion process with tetra-phenylporphine solution which have similar concentration with adsorption solution, the counter-diffusivities of coronene were also ${\sim}10^{-15}m^2/sec$, and that of tetra-phenylporphine into pores were determined as ${\sim}10^{-11}m^2/sec$. The counter-diffusivities of coronene desobed from the adsorbent were significantly redyced in comparison with the effective diffusivities when there is counter-diffusion flux. The values mainly depended on the existence of counter-diffusion flux, but not concerned with the species and amount of desorbates.

  • PDF

Trends and Factors of Ozone Concentration Variations in Korea (우리나라의 오존농도 변화 추이와 주요 인자)

  • 김영성;오현선
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 1999.10a
    • /
    • pp.59-60
    • /
    • 1999
  • 20세기 후반 소비문화의 확산과 더불어 자동차 문화가 보편화되면서 전세계적으로 고농도 오존이 문제되고 있다. 1940년대 LA 지역에서 광화학 오염현상이 처음 발견된 이래 1970, 80년대 본격적으로 연구 투자가 이루어지는 동안 LA 지역의 이상적 기후와 오존 농도 변화는 광화학 오염의 전형이었다. 그러나 1990년대 들어, 지역규모의 오염물질 이동에 따른 광역 오염 (미국 동부), 종관풍이 약할 때 오염물질이 정체되며 발생하는 국지 오염 (유럽), 산성비 연구 과정에서 밝혀지기 시작한 강우와 구름의 영향들이 알려지며 오존 오염은 당초에 생각하였던 것보다 훨씬 복합적인 문제임을 인식하게 되었다.(중략)

  • PDF

An Experimental Study on the Behavior of Injection Gas (분사가스의 확산거동에 관한 실험적 연구 성방정식의 형성(II))

  • 박경석
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.6
    • /
    • pp.1215-1222
    • /
    • 1989
  • 본 논문의 목적은 공기 유동장내에 가스분류의 거동을 조사하고 실용 가스 기관의 설계시에 필요한 기초적 데이타를 제공하고자 하는데 있다.본 연구와 관련 된 후래의 연구를 보면 자문등은 열선농도프로브를 사용하여 정상분류중의 농도측정을 행하였고, 분류내의 내부구조를 상세히 조사하였다. 특히, 종래에는 일정하게 보였 던 분류코아 부의 농도변동값의 경향을 구체적으로 나타내었다.

Evaluation of Strength and Concentration of Odor according to the Air Sampling and Measuring Methods (악취 측정과 시료채취기법이 악취세기 및 성분농도 평가에 미치는 영향)

  • 양성봉;김현정;김석민
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2000.04a
    • /
    • pp.127-128
    • /
    • 2000
  • 악취 측정은 악취의 배출 허용을 판정하는데 대단히 중요한 기술이라 할 수 있다. 우리나라의 경우 악취배출 허용기준은 대기환경보전법에 명시되어 있으며 그 규제기준의 준법성 여부는 직접 관능법에 의한 악취 세기, 희석배율(악취농도) 및 기기측정에 의한 악취성분의 농도에 의해 판정하고 있다. 최근 악취민원이 전국으로 확산되면서 악취 배출원을 갖는 사업장과 악취오염의 피해를 입는 주민의 입장에서 악취의 허용배출의 정도에 대한 견해차이가 부각되면서 악취의 측정이나 시료채취에 대한 합리성이 요구되고 있다.(중략)

  • PDF

Studies on Depletion Layer of Probe Particles in the System of Poly(vinyl acetate)/Dimethyl Sulfoxide by Dynamic Light Scattering (폴리(비닐 아세테이트)/디메틸설폭사이드 계에서 동적 광산란법에 의한 탐침입자의 배제층 연구)

  • Jeon, Guk Jin;Jang, Jinho;Park, Il Hyun
    • Polymer(Korea)
    • /
    • v.39 no.3
    • /
    • pp.370-381
    • /
    • 2015
  • In the system of poly(vinyl alcohol) (PVA)/dimethyl sulfoxide, the refractive index of polymer was very well matched to that of solvent and thus its scattered intensity could be minimized. After adding small amount of polystyrene latex particle (nominal diameter 200 nm), diffusion behavior of only probe particle was investigated against the concentration of polymer matrix by means of dynamic light scattering. The polymer concentration dependence of its reduced diffusion coefficient was able to be analysed with the stretched exponential function of the reduced concentration $C[{\eta}]$. In very dilute concentration regime, the depletion layer kept constant but at the early semi-dilute regime of $1{\leq}C[{\eta}]{\leq}2.5$, the concentration-dependent exponent of depletion layer ${\delta}$ was appeared to be -0.8 which was very close to theoretical one of -0.85. However it was also observed at the higher concentration that its layer thickness decreased more abruptly than theoretical expectation and this phenomenon was ascribed to Oosawa type attractive interaction between adjacent latex particles.

Application of an Automated Time Domain Reflectometry to Solute Transport Study at Field Scale: Transport Concept (시간영역 광전자파 분석기 (Automatic TDR System)를 이용한 오염물질의 거동에 관한 연구: 오염물질 운송개념)

  • Kim, Dong-Ju
    • Economic and Environmental Geology
    • /
    • v.29 no.6
    • /
    • pp.713-724
    • /
    • 1996
  • The time-series resident solute concentrations, monitored at two field plots using the automated 144-channel TDR system by Kim (this issue), are used to investigate the dominant transport mechanism at field scale. Two models, based on contradictory assumptions for describing the solute transport in the vadose zone, are fitted to the measured mean breakthrough curves (BTCs): the deterministic one-dimensional convection-dispersion model (CDE) and the stochastic-convective lognormal transfer function model (CLT). In addition, moment analysis has been performed using the probability density functions (pdfs) of the travel time of resident concentration. Results of moment analysis have shown that the first and second time moments of resident pdf are larger than those of flux pdf. Based on the time moments, expressed in function of model parameters, variance and dispersion of resident solute travel times are derived. The relationship between variance or dispersion of solute travel time and depth has been found to be identical for both the time-series flux and resident concentrations. Based on these relationships, the two models have been tested. However, due to the significant variations of transport properties across depth, the test has led to unreliable results. Consequently, the model performance has been evaluated based on predictability of the time-series resident BTCs at other depths after calibration at the first depth. The evaluation of model predictability has resulted in a clear conclusion that for both experimental sites the CLT model gives more accurate prediction than the CDE model. This suggests that solute transport at natural field soils is more likely governed by a stream tube model concept with correlated flow than a complete mixing model. Poor prediction of CDE model is attributed to the underestimation of solute spreading and thus resulting in an overprediction of peak concentration.

  • PDF

Estimation of Cadmium, Copper, Lead Mobility in Column Packed with Furnace Slag (제강슬래그로 충전된 컬럼에서의 카드뮴, 구리, 납의 이동성 평가)

  • Lee, Gwang-Hun;Chung, Jae-Shik;Nam, Kyoung-Phile;Park, Jun-Boum
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.54-61
    • /
    • 2008
  • Permeable reactive barriers (PRBs) technology has been focused in contaminated groundwater remediation. It is necessary to select adequate reactive material according to characteristics of contaminant in groundwater. In this research, the reaction between reactive material and heavy metal contaminants was estimated through column test. Reactive material was slag, which has been produced in Gwangyang power plant, and heavy metal contaminants were cadmium, lead and copper. Column test was performed in the condition of 1) single and multi contaminated solution and 2) different initial concentration of cadmium. Retardation factor of cadmium is 3.94 in multi contamination. But that of copper is 40.3 in single and 25 in multi. The difference of retardation between cadmium and copper is due to affinity, resulted from the difference of electronegativity. In multi-contamination, copper effluent concentration was above initial copper concentration and at the same time lead effluent concentration was decreased. This phenomenon was considered that lead extract copper sorbed in slag and then lead was sorbed to the vacant sorption site instead. And as the initial concentration was increased, the retardation factor of cadmium became decreased.

Influence of Water-Cement Ratios and Curing Conditions on the Diffusion Characteristics of Chloride Ion in Concrete (콘크리트의 염소이온 확산특성에 미치는 물-시멘트비 및 양생조건의 영향)

  • Bae, Su-Ho;Lee, Kwang-Myong;Kim, Jee-Sang;Jung, Sang-Hwa
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.4A
    • /
    • pp.753-759
    • /
    • 2006
  • To predict service life of concrete structures exposed to chloride attack, surface chloride concentration, diffusion coefficient of chloride ion, and chloride corrosion threshold value in concrete, are used as important factors. Of these, as the diffusion coefficient of chloride ion for concrete is strongly influenced by concrete quality and environmental conditions of structures and may significantly change the service life of structures, it is considered as the most important factor for service life prediction. The qualitative factors affecting the penetration and diffusion of chloride ion into concrete are water-cement (W/C) ratio, age, curing conditions, chloride ion concentration of given environment, wet and dry conditions, etc. In this paper the influence of W/C ratio and curing conditions on the diffusion characteristics of chloride ion in concrete was investigated through the chloride ion diffusion test. In the test, the voltages passing through the diffusion cell were measured by accelerated test method using potential difference, and then with the consideration of IR drop ratio the diffusion coefficient of chloride ion for concrete with different W/C ratios were estimated by Andrade's model. Furthermore, under different curing conditions formulas for the estimation of the diffusion coefficient of chloride ion have been proposed by the regression analysis considering the effect of W/C ratio and age.

Effects of Diffusibility of Bubbling Tablet Herbicide Formulations for Paddy Rice (수도용 발포성정제 제초제의 확산성에 미치는 영향)

  • Kim, Man-Ho;Ryang, Kwang-Rok;Lee, Chang-Hyeuk;Shim, Jae-Weon;Kim, Kyung-Hyun;Yoon, Cheol-Su;You, Yong-Man;Pyon, Jong-Yeong
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.4
    • /
    • pp.401-410
    • /
    • 2005
  • A series of studies involving formulation processes, bubbling activity test, diffusibility test and biological efficacy test was undertaken to develop Jumbo herbicide formulations in paddy rice field. Gas evolution speed from the tablets prepared by different organic acids was in the order of oxalic acid, malonic acid, citric acid, and tartaric acid. The total volume of evolved gas from the tablet and diffusibility of the active ingredient in the submerged water were increased with increase of water temperature; the volume from 1 g of tablet at 10, 15, 25 and $30^{\circ}C$ for 5 minutes after immersion into water was 20, 25, 28, 45, 57 mL, respectively. The concentration of halosulfuron-methyl and pyriminobac-methyl in submerged water at 5, 15, 20 and $30^{\circ}C$ at the 2.4 m distance from the applied spot of the tablet was 20, 48, 85, and 97% of the concentration of treated spot, respectively. The evolved gas volume from the tablets was not affected by pH of submerged water. The concentration of halosulfuron-methyl in different sizes of submerged water within 24 hours after treatment of the tablet was maintained 0.16 ppm, which is ideal concentration at standard dosage regardless of the submerged water area. The concentration of pyriminobac-methyl was also uniformly dispersed in the water within 24 hours after applying it into the submerged water. The wind velocity of 5 m $sec^{-1}$ on concentration distribution of halosulfuron-methyl and pyriminobac-methyl in the submerged water 24 hours after treatment was not influenced; an equal concentration in the up the wind and down the wind from the applied spot was maintained. Spot treatments of one tablet formulations(5 g) including 4 times higher dosage at 4 different spots resulted in even concentration distribution of active ingredient in the water 24 hours after applying it into the submerged water.