• Title/Summary/Keyword: 확산근사

Search Result 99, Processing Time 0.022 seconds

Real-Time Simulation of Single and Multiple Scattering of Light (빛의 단일 산란과 다중 산란의 실시간 시뮬레이션 기법)

  • Ki, Hyun-Woo;Lyu, Ji-Hye;Oh, Kyoung-Su
    • Journal of Korea Game Society
    • /
    • v.7 no.2
    • /
    • pp.21-32
    • /
    • 2007
  • It is significant to simulate scattering of light within media for realistic image synthesis; however, this requires costly computation. This paper introduces a practical image-space approximation technique for interactive subsurface scattering. We use a general two-pass approach, which creates transmitted irradiance samples onto shadow maps and computes illumination using the shadow maps. We estimate single scattering efficiently using a method similar to common shadow mapping with adaptive deterministic sampling. A hierarchical technique is applied to evaluate multiple scattering, based on a diffusion theory. We further accelerate rendering speed by tabulating complex functions and utilizing level of detail. We demonstrate that our technique produces high-quality images of animated scenes with blurred shadow at hundreds frames per second on graphics hardware. It can be integrated into existing interactive systems easily.

  • PDF

Similar sub-Trajectory Retrieval Technique based on Grid for Video Data (비디오 데이타를 위한 그리드 기반의 유사 부분 궤적 검색 기법)

  • Lee, Ki-Young;Lim, Myung-Jae;Kim, Kyu-Ho;Kim, Joung-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.183-189
    • /
    • 2009
  • Recently, PCS, PDA and mobile devices, such as the proliferation of spread, GPS (Global Positioning System) the use of, the rapid development of wireless network and a regular user even images, audio, video, multimedia data, such as increased use is for. In particular, video data among multimedia data, unlike the moving object, text or image data that contains information about the movements and changes in the space of time, depending on the kinds of changes that have sigongganjeok attributes. Spatial location of objects on the flow of time, changing according to the moving object (Moving Object) of the continuous movement trajectory of the meeting is called, from the user from the database that contains a given query trajectory and data trajectory similar to the finding of similar trajectory Search (Similar Sub-trajectory Retrieval) is called. To search for the trajectory, and these variations, and given the similar trajectory of the user query (Tolerance) in the search for a similar trajectory to approximate data matching (Approximate Matching) should be available. In addition, a large multimedia data from the database that you only want to be able to find a faster time-effective ways to search different from the existing research is required. To this end, in this paper effectively divided into a grid to search for the trajectory to the trajectory of moving objects, similar to the effective support of the search trajectory offers a new grid-based search techniques.

  • PDF

Study on the improvement of prediction model for the railway environmental noise using ISO 9613-2 (ISO 9613-2를 이용한 철도 환경소음 예측 모델 개선에 관한 연구)

  • Jang, Seungho;Koh, Hyo-In;Hong, Jiyoung
    • Journal of Environmental Impact Assessment
    • /
    • v.26 no.1
    • /
    • pp.11-26
    • /
    • 2017
  • Approximate empirical equations obtained by measuring overall noise levels at different distances have been used to evaluate environmental influence of the railway noise though the accurate prediction of noise levels is important. In this paper, a noise prediction model considering the frequency characteristics of noise sources and propagation was suggested to improve the accuracy of noise prediction. The railway noise source was assorted into track, wheel, traction and aerodynamic components and they were characterized with the source strength and speed coefficient at each octave-band frequency. Correction terms for the acoustic roughness and the track/bridge condition were introduced. The sound attenuation from a source to a receiver was calculated taking account of the geometrical divergence, atmospheric absorption, ground effect, diffraction at obstacles and directivity of source by applying ISO 9613-2. For obtaining the source strength and speed coefficients, the results of rolling noise model, numerical analysis and measurements of pass-by noise were analyzed. We compared the predicted and measured noise levels in various vehicles and tracks, and verified the accuracy of the present model. It is found that the present model gives less error than the conventional one, so that it can be applied to make the accurate prediction of railway noise effect and establish its countermeasures efficiently.

Fast GPU Implementation for the Solution of Tridiagonal Matrix Systems (삼중대각행렬 시스템 풀이의 빠른 GPU 구현)

  • Kim, Yong-Hee;Lee, Sung-Kee
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.32 no.11_12
    • /
    • pp.692-704
    • /
    • 2005
  • With the improvement of computer hardware, GPUs(Graphics Processor Units) have tremendous memory bandwidth and computation power. This leads GPUs to use in general purpose computation. Especially, GPU implementation of compute-intensive physics based simulations is actively studied. In the solution of differential equations which are base of physics simulations, tridiagonal matrix systems occur repeatedly by finite-difference approximation. From the point of view of physics based simulations, fast solution of tridiagonal matrix system is important research field. We propose a fast GPU implementation for the solution of tridiagonal matrix systems. In this paper, we implement the cyclic reduction(also known as odd-even reduction) algorithm which is a popular choice for vector processors. We obtained a considerable performance improvement for solving tridiagonal matrix systems over Thomas method and conjugate gradient method. Thomas method is well known as a method for solving tridiagonal matrix systems on CPU and conjugate gradient method has shown good results on GPU. We experimented our proposed method by applying it to heat conduction, advection-diffusion, and shallow water simulations. The results of these simulations have shown a remarkable performance of over 35 frame-per-second on the 1024x1024 grid.

2차원 중성자수송모델 합성법에 의한 노외계측기 교정법

  • 하창주;성기봉;이해찬;유상근;정선교;이덕중;김윤호;김용배
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.335-341
    • /
    • 1997
  • 운전중 노심의 출력변화를 감시하는 노외계측기(Excore Detector)는 노내계측기(Incore Detector)를 통하여 측정되어진 축방향 출력편차(Axial Offset)를 이용하여 교정되고 있다. 노외 계측기의 전류와 축방향출력편차의 선형적인 관계를 가정하여 노내계측기로 최소한 4회 노심출력을 측정한후 최소자승법(Least Square Method)으로 비례상수들을 구하는 기존의 방법을 대신하여, 단순 노외계측기 교정법은 노내계측기로 1회 측정되어진 자료들을 이용하여 계측기 반응상수(Detector Response Factor)를 계산한 후 비례상수를 계산한다. 계측기반응상수는 2차원 중성자수송모델로부터 계산된 weighting factor와 3차원 확산이론으로부터 구한 노심출력을 이용하여 계산된다. 중성자수송계산은 (R-Z)와 (R-$ heta$)모델을 합성하여 3차원 weighting factor를 계산하므로 축방향 영향뿐만 아니라 집합체별 영향을 고려하였다. 또한 노심의 복잡한 구조로 인하여 근사적인 weighting (actor와 노심출력분포의 사용은 노외계측기의 전류와 계측기반응율의 불일치를 초래하며, 이를 해결하는 상수를 소개하여 보다 정확한 교정결과를 얻도록하였다. 이와 같은 방법을 고리 3호기 9, 10주기 전주기와 11주기초에 적용하여 노심의 연소분포, 냉각수의 온도분포, 노심의 연소도, 노심출력준위등에 대한 단순 노외계측기 교정법의 오차를 분석하여 최적의 노외계측기 교정모델을 제시하였다. 2차원 중성자수송모델 합성법에 의한 단순노외계측기 교정법은 2차원 (R-Z) 중성자수송모델보다 개선된 결과와 평균오차 0.179% 최대 오차 0.624%를 보여주고 있다.하면 조사 후의 조직안정성에도 크게 기여할 것으로 기대된다.EX>O가 각각 첨가된 경우, Ar-4vol.%H$_2$ 분위기보다 H$_2$분위기에서 소결했을 때 밀도가 더 높았다. 그러나, 결정립은 $UO_2$$UO_2$-Li$_2$O의 경우, 수소분위기에서 소결했을 때, (U,Ce)O$_2$와 (U,Ce)O$_2$-Li$_2$O에서는 Ar-4vol.%H$_2$분위기에서 소결했을 때 더욱 성장하였다.설명해 줄 수 있다. 넷째, 불규칙적이며 종잡기 힘들고 단편적인 것으로만 보이던 중간언어도 일정한 체계 속에서 변화한다는 사실을 알 수 있다. 다섯째, 종전의 오류 분석에서는 지나치게 모국어의 영향만 강조하고 다른 요인들에 대해서는 다분히 추상적인 언급으로 끝났지만 이 분석을 통 해서 배경어, 목표어, 특히 중간규칙의 역할이 괄목할 만한 것임을 가시적으로 관찰할 수 있 다. 이와 같은 오류분석 방법은 학습자의 모국어 및 관련 외국어의 음운규칙만 알면 어느 학습대상 외국어에라도 적용할 수 있는 보편성을 지니는 것으로 사료된다.없다. 그렇다면 겹의문사를 [-wh]의리를 지 닌 의문사의 병렬로 분석할 수 없다. 예를 들어 누구누구를 [주구-이-ν가] [누구누구-이- ν가]로부터 생성되었다고 볼 수 없다. 그러므로 [-wh] 겹의문사는 복수 의미를 지닐 수 없 다. 그러면 단수 의미는 어떻게 생성되는가\ulcorner 본 논문에서는 표면적 형태에도 불구하고 [-wh]의미의 겹의문사는 병렬적 관계의 합성어가 아니라 내부구조를 지

  • PDF

A Study on the Electrochemical Performance of Fe-V Chloric/Sulfuric Mixed Acid Redox Flow Battery Depending on Electrode Activation Temperature (Fe-V Chloric/Sulfuric Mixed Acid 레독스흐름전지 전극의 활성화 온도에 따른 전기화학적 성능 고찰)

  • Lee, Han Eol;Kim, Dae Eop;Kim, Cheol Joong;Kim, Taekeun
    • Applied Chemistry for Engineering
    • /
    • v.31 no.6
    • /
    • pp.639-645
    • /
    • 2020
  • Among the components of redox flow battery (RFB), the electrode serves as a diffusion layer of an electrolyte and a path for electrons and also is a major component that directly affects the RFB performance. In this paper, chloric/sulfuric mixed acidwas used as a supporting electrolyte in RFB system with Fe2+/Fe3+ and V2+/V3+ as redox couple. The optimum electrode and activation temperature were suggested by comparing the capacity, coulombic efficiency and energy efficiency according to the electrode type and activation temperature. In the RFB single cell evaluation using 5 types of carbon electrodes used in the experiments, all of them showed close to the theoretical capacity to retain the reliability of the evaluation results. GFD4EA showed relatively excellent energy efficiency and charge/discharge capacity. In order to investigate the electrochemical performance according to the activation temperature, GFD4EA electrode was activated by heat treatment at different temperatures of 400, 450, 500, 600 and 700 ℃ under an air atmosphere. Changes in physical properties before and after the activation were observed using electrode mass retention, scanning electron microscope (SEM), XPS analysis, and electrochemical performance was compared by conducting RFB single evaluation using electrodes activated at each temperature given above.

Comparison of Wetting and Drying Characteristics in Differently Textured Soils under Drip Irrigation (점적관개 시 토성별 습윤.건조 특성 비교)

  • Kim, Hak-Jin;Son, Dong-Wook;Hur, Seung-Oh;Roh, Mi-Young;Jung, Ki-Yuol;Park, Jong-Min;Rhee, Joong-Yong;Lee, Dong-Hoon
    • Journal of Bio-Environment Control
    • /
    • v.18 no.4
    • /
    • pp.309-315
    • /
    • 2009
  • Maintenance of adequate soil water content during the period of crop growth is necessary to support optimum plant growth and yields. A better understanding of soil water movement for precision irrigation would allow efficient supply of water to crops, thereby resulting in minimization of water drainage and contamination of ground water. This research reports on the characterization of spatial and temporal variations in water contents through three different textured soils, such as loam, sandy loam, and loamy sand, when water is applied on the soil surface using an one-line drip irrigation system and the soils are dried after the irrigation stops, respectively. Water contents through each soil profile were continuously monitored using three Sentek probes, each consisting of three capacitance sensors at 10, 20, and 30cm depths. Spatial variability in water content for each soil type was strongly influenced by soil textural class. There were big differences in wetting pattern and the rate of downward movement between loam and sandy loam soils, showing that the loam soil had a wider wetting pattern and a slower rate of downward movement than did the sandy loam soil. The wetting pattern in loamy sand soil was not apparent due to a low variability in water content (< 10%) by a lower-water holding capacity as compared to those measured in the loam and sandy loam soils, implying that the rate of water drainage below a depth of 30cm was high. When soils were dried, there were highly exponential relationships between water content and time elapsed after irrigation stops ($r^2$${\geq}$0.98). It was estimated that equilibrium moisture contents for loam, sandy loam, and loamy sand soils would be 17.6%, 6.2%, and 4.2%, respectively.

The Development of Theoretical Model for Relaxation Mechanism of Sup erparamagnetic Nano Particles (초상자성 나노 입자의 자기이완 특성에 관한 이론적 연구)

  • 장용민;황문정
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.39-46
    • /
    • 2003
  • Purpose : To develop a theoretical model for magnetic relaxation behavior of the superparamagnetic nano-particle agent, which demonstrates multi-functionality such as liver- and lymp node-specificity. Based on the developed model, the computer simulation was performed to clarify the relationship between relaxation time and the applied magnetic field strength. Materials and Methods : The ultrasmall superparamagnetic iron oxide (USPIO) was encapsulated with biocompatiable polymer, to develop a relaxation model based on outsphere mechanism, which was resulting from diffusion and/or electron spin fluctuation. In addition, Brillouin function was introduced to describe the full magnetization by considering the fact that the low-field approximation, which was adapted in paramagnetic case, is no longer valid. The developed model describes therefore the T1 and T2 relaxation behavior of superparamagnetic iron oxide both in low-field and in high-field. Based on our model, the computer simulation was performed to test the relaxation behavior of superparamagnetic contrast agent over various magnetic fields using MathCad (MathCad, U.S.A.), a symbolic computation software. Results : For T1 and T2 magnetic relaxation characteristics of ultrasmall superparamagnetic iron oxide, the theoretical model showed that at low field (<1.0 Mhz), $\tau_{S1}(\tau_{S2}$, in case of T2), which is a correlation time in spectral density function, plays a major role. This suggests that realignment of nano-magnetic particles is most important at low magnetic field. On the other hand, at high field, $\tau$, which is another correlation time in spectral density function, plays a major role. Since $\tau$ is closely related to particle size, this suggests that the difference in R1 and R2 over particle sizes, at high field, is resulting not from the realignment of particles but from the particle size itself. Within normal body temperature region, the temperature dependence of T1 and T2 relaxation time showed that there is no change in T1 and T2 relaxation times at high field. Especially, T1 showed less temperature dependence compared to T2. Conclusion : We developed a theoretical model of r magnetic relaxation behavior of ultrasmall superparamagnetic iron oxide (USPIO), which was reported to show clinical multi-functionality by utilizing physical properties of nano-magnetic particle. In addition, based on the developed model, the computer simulation was performed to investigate the relationship between relaxation time of USPIO and the applied magnetic field strength.

  • PDF

Measurement and Monte Carlo Simulation of 6 MV X-rays for Small Radiation Fields (선형가속기의 6 MV X-선에 대한 소형 조사면 측정과 몬테 카를로 시뮬레이션)

  • Jeong Dong Hyeok;Lee Jeong Ok;Kang Jeong Ku;Kim Soo Kon;Kim Seung Kon;Moon Sun Rock
    • Radiation Oncology Journal
    • /
    • v.16 no.2
    • /
    • pp.195-202
    • /
    • 1998
  • Purpose : In order to obtain basic data for treatment plan in radiosurgery, we measured small fields of 6 MV X-rays and compared the measured data with our Monte Carlo simulations for the small fields. Materials and Methods : The small fields of 1.0, 2.0 and 3.0 cm in diameter were used in this study. Percentage depth dose (PDD) and beam Profiles of those fields were measured and calculated. A small semiconductor detector, water phantoms, and a remote control system were used for the measurement Monte Carlo simulations were Performed using the EGS4 code with the input data prepared for the energy distribution of 6 MV X-rays, beam divergence, circular fields and the geometry of the water phantoms. Results : In the case of PDD values, the calculated values were lower than the measured values for all fields and depths, with the differences being 0.3 to 5.7% at the depths of 20 to 20.0 cm and 0.0 to 8.9% at the surface regions. As a result of the analysis of beam profiles for all field sizes at a depth of loom in water phantom, the measured 90% dose widths were in good agreement with the calculated values, however, the calculated Penumbra radii were 0.1 cm shorter than measured values. Conclusion : The measured PDDs and beam profiles agreement with the Monte Carlo calculations approximately. However, it is different when it comes to calculations in the area of phantom surface and penumbra because the Monte Carlo calculations were performed under the simplified geometries. Therefore, we have to study how to include the actual geometries and more precise data for the field area in Monte Carlo calculations. The Monte Carlo calculations will be used as a useful tool for the very complicated conditions in measurement and verification.

  • PDF