• 제목/요약/키워드: 확률 탐색

검색결과 461건 처리시간 0.029초

위상배열 레이다 검출 및 추적 매개변수의 최적 스케쥴링 (Optimal Scheduling of Detection and Tracking Parameters in Phased Array Radars)

  • 정영헌;김현수;홍순목
    • 전자공학회논문지S
    • /
    • 제36S권7호
    • /
    • pp.50-61
    • /
    • 1999
  • 이 논문에서는 클러터 환경에서 항적 유지에 필요한 레이다 에너지를 최소하하기 위한 위상배열 레이디의 표적 검출 및 추적 매개변수 제어방법을 제시한다. 이를 위해 위상배열 레이다의 표적 탐색과정에서 비롯되는 표적 검출과정을 수학적 모델로 전개한다. 수학적 전개과정을 통해 표적 검출과정에서 발생하는 클리터나 측정 잡음에 의한 거짓 정보(false alarm)등과 같은 실제 표적이외의 측정을 고려한다. 추적필터 역시 클리터의 영향을 고려하기 위해 확률적 데이터 연관(Probabilistic Data Association: PDA)필터의 수정된 리카티 방정식의 근사식을 이용한다. 표적 탐색과정과 추적모델을 바탕으로, 최적의 매개변수 계획(scheduling)문제를 비선형 최적제어문제로 수식화하며, 최적제어문제의 해를 얻기 위해 제한조건을 가진 비선형 최적화 문제를 푼다.

  • PDF

사회복지사의 직무만족과 자기효능감에 관한 탐색적 연구 (A Study on the Social Worker's Job Satisfaction and Self-efficacy)

  • 김종환
    • 한국컴퓨터정보학회논문지
    • /
    • 제18권8호
    • /
    • pp.157-165
    • /
    • 2013
  • 본 논문에서는 사회복지사의 직무만족과 자기효능감과의 관계에 대한 실증적 탐색을 위한 이론적 배경을 제안한다. 선행 연구들에 의하면 자기효능감이 높은 사람일수록 해당 직무를 적극적으로 선택하고 많은 노력을 경주하고, 지속적으로 시도할 가능성이 높고 따라서 한 개인이 취하는 행동이나 과업이 성공할 확률이 높다고 한다. 하지만 사회복지 영역에 있어서는 업무의 특수성 상, 다른 사회과학 영역에서와는 다른 이론적 차이점이 존재할 것으로 추정된다. 따라서 이 논문에서는 직무만족과 자기효능감에 대한 기존 사회과학 영역에서의 이론적 배경들을 살펴보고, 향후 실증분석을 통하여 사회복지실천 연구의 영역확장을 꾀할 수 있는 기초를 제공하고자 한다.

Bayesian 기법과 연계한 SWMM 매개변수 추정 및 불확실성 분석 (A Bayesian Approach to Storm Water Management Model (SWMM) for the Estimation of Parameters and Their Uncertainty)

  • 김장경;반우식;권현한
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2016년도 학술발표회
    • /
    • pp.110-110
    • /
    • 2016
  • 도시 유역의 강우-유출 모의에는 지표 투수율 및 하수관거 영향 등 인위적 배수계통의 영향을 고려할 수 있는 도시유출모형이 널리 이용되고 있으며, 모형 검증을 통해 모의 성능을 평가한다. 도시유출모형의 검증은 일반적인 강우-유출 모형과 같이 강우사상별 유량의 관측시계열과 모의시계열의 목적함수가 최소가 되는 최적 매개변수를 탐색하는 과정이다. 도시유출모형의 검증에서 발생하는 문제점은 크게 다음과 같다. 첫째, 대규모 도시 유역의 복잡하고 다양한 하수관거에 대한 최적매개변수를 관거별로 구하는 것은 물리적으로 불가능하다. 따라서 동일 배수분구내 하수관거의 매개변수 값은 동일하다고 가정하거나, 모형 단순화 과정을 통해 매개변수의 물리적 범위 내에서 최적해를 탐색해야 하는 단순화에서 기인한 불확실성이 있다. 둘째, 다양한 매개변수들의 물리적 범위를 고려하기 위해서는 전역최적화기법이 유효하다. 그러나 전역최적화 종류, 목적함수, 모의횟수, 목표성능별 최적 매개변수 결과가 각각 다르므로 추정된 최적 매개변수의 범위에 대한 불확실성이 있다. 이에 본 연구에서는 Bayesian 모형과 EPA SWMM(Storm Water Management Model)을 연계하여 도시유출모형의 매개변수 불확실성을 정량적으로 분석할 수 있는 모형을 제안하고자 한다. 이를 위해 서울 우이천 유역을 대상으로 SWMM 모형을 구축하고, 절단 정규분포(truncated Gaussian distribution)를 사전분포(prior)로 가정하여 매개변수의 물리적 범위를 고려하였다. 최종적으로 결합확률분포로 계산된 각 매개변수간 사후분포를 통해 모의된 유출량의 불확실성을 정량적으로 분석하였다. 본 연구에서 제안된 모형은 대규모 도시 유역의 도시유출모형 구축 시 다양한 매개변수의 물리적 범위를 고려한 최적화와 동시에 내재된 불확실성을 정량적으로 분석할 수 있으므로, 침수예측 및 홍수예경보 등의 문제에서 상당한 신뢰성을 확보할 수 있을 것으로 판단된다.

  • PDF

뜨살리스-엔트로피 분석을 통한 무선 랜의 이기적인 노드 탐지 기법 (A Study on Detecting Selfish Nodes in Wireless LAN using Tsallis-Entropy Analysis)

  • 류병현;석승준
    • 한국지능시스템학회논문지
    • /
    • 제22권1호
    • /
    • pp.12-21
    • /
    • 2012
  • IEEE 802.11 표준 무선 네트워크에서 사용되는 DCF(CSMA/CA) 방식의 MAC 프로토콜은 노드들 사이에서 공평한 채널 접근 확률을 보장하도록 설계되었다. 하지만 최근 급속히 확산되고 있는 무선 환경에서 다른 노드들보다 인위적으로 더 많은 데이터를 전송하는 노드가 존재하는 것이 사실이다. 이들 오동작 노드들은 더 많은 데이터를 보내기 위해서 자신의 MAC 프로토콜 동작을 변형시키거나 다른 노드들의 MAC 동작을 방해한다. 이러한 문제는 이기적(Selfish) 노드 문제라고 정의되어 왔으며, 지금까지의 대부분 연구들에서는 무선 랜 내부의 MAC 프로토콜 동작을 프레임 단위로 분석하여 이기적인 노드를 검색하는 방법을 제안하였으나 모든 종류의 이기적인 노드들을 효과적으로 검출할 수는 없었다. 이러한 단점을 보안하기 위해서 본 논문에서는 통계적 기법 중 하나인 뜨살리스-엔트로피(Tsallis-Entropy)를 사용하여 이기적인 노드 탐색 알고리즘을 제안한다. 뜨살리스-엔트로피는 확률 분포의 밀집도 혹은 분산정도를 효과적으로 나타낼 수 있는 척도이다. 제안한 알고리즘은 무선 랜을 구성하는 AP노드에서 동작하도록 설계되었으며, 무선 노드별로 데이터 간격에 대한 확률 분포를 추출해서 뜨살리스-엔트로피를 계산한 후 임계치와 비교하는 방법으로 이기적인 노드를 검출한다. 논문에서 제안한 이기적 노드 검출 알고리즘의 성능을 평가하기 위하여 다양한 무선 랜 환경(혼잡도, 이기적 노드 동작방법, 임계치)을 고려하여 시뮬레이션을 수행한다. 시뮬레이터는 ns2를 사용하였으며, 실험결과 제안한 방법의 이기적인 노드 검출률 이 매우 높음을 알 수 있다.

도로 네트워크 환경에서 이동 객체 위치 예측을 위한 효율적인 인덱싱 기법 (An Efficient Indexing Technique for Location Prediction of Moving Objects in the Road Network Environment)

  • 홍동숙;김동오;이강준;한기준
    • 한국공간정보시스템학회 논문지
    • /
    • 제9권1호
    • /
    • pp.1-13
    • /
    • 2007
  • 현재 무선 통신 기술과 위치 정보 기술의 발달은 다양한 위치 기반 서비스(LBS: Location Based Services)의 발전을 가져왔으며, 위치 기반 서비스에서 이동 객체의 미래 위치를 빠르게 예측하기 위한 미래 인덱스의 필요성이 높아지고 있다. 미래 인덱스와 관련한 대표적인 연구로써 도로 네트워크 환경에서 이동 객체의 과거 궤적 정보를 이용하여 신뢰성을 높인 확률 궤적 예측 기법이 연구되었다. 그러나, 이 기법은 장기간 미래 질의 시 방대한 미래 궤적 탐색 부하로 인해 예측 성능이 떨어지게 되며, 이 때문에 발생하는 빈번한 미래 궤적 갱신으로 인해 인덱스 유지비용이 매우 높아지게 된다. 따라서, 본 논문에서는 효율적인 장기간 미래 위치 예측을 위한 셀 기반의 미래 인덱싱 기법인 PCT-Tree(Probability Cell Trajectory-Tree)를 제시한다. PCT-Tree는 방대한 과거 궤적의 확률을 셀 단위로 재구성함으로써 인덱스 크기를 줄이고, 장기간 미래 질의의 예측 성능을 개선시킨다. 또한, 과거 궤적 정보를 이용하여 신뢰성있는 미래 궤적을 예측함으로써 미래 궤적 예측 오류에 따르는 통신비용과 미래 궤적 갱신으로 인한 인덱스 재구성 비용을 최소화 할 수 있다. 실험을 통해 도로 네트워크 환경에서 PCT-Tree가 기존 인덱싱 기법보다 장기간 미래 질의 성능이 우수함을 입증하였다.

  • PDF

데이터 구조에 강건한 K 관리도의 관리 모수 결정 (Robust determination of control parameters in K chart with respect to data structures)

  • 박잉근;이성임
    • Journal of the Korean Data and Information Science Society
    • /
    • 제26권6호
    • /
    • pp.1353-1366
    • /
    • 2015
  • 공정의 안정성을 평가하기 위해 사용되는 Shewhart 관리도 기법은 최근 다양한 분야에서 널리 응용되고 있지만, 품질 특성치에 대한 엄격한 확률분포를 가정한다. 하지만 현업에서 수집되고 있는 데이터의 확률분포는 알려진 경우가 많지 않으며, 다변량 데이터로 확장될수록 확률분포를 결정하는데 더 큰 어려움이 따른다. 이러한 문제점을 해결하기 위해 다양한 비모수 관리도 기법이 연구되었는데, 최근 연구되고 있는 비모수 관리도 기법 중 하나인 RBF (Radial Basis Function) 커널 기반의 SVDD (Support Vector Data Description) 관리도는 관리상태 하의 데이터 영역에 대한 경계를 결정함으로써 공정의 이상상태를 탐지하는 기법으로 K 관리도로 불리우며, 다양한 분야에서 적용되고 있다. 그런데 K 관리도를 적용하기 위해서는 관리도의 성능을 결정짓는 커널모수 등의 선택이 중요하며, 관리도를 작성하기 전에 미리 결정되어야 한다. 이를 위해 기존의 연구들은 격자 탐색법 등을 활용하여 모수를 결정하고 있지만, 선택 가능한 범위에 대한 반복적인 계산으로 최적값을 선택하고 있어 계산 비용이 커지고 또 시간 등의 문제로 실제 문제에 적용하기 어려운 점이 있다. 따라서 본 연구에서는 데이터의 구조에 따라 모의실험을 통해 선택 가능한 영역에서의 효율성을 비교 검토하고, 이를 바탕으로 쉽게 적용할 수 있는 새로운 모수 선택 방법을 제안하고자 한다. 이를 통해 데이터 구조에 대해 강건함을 보이는 모수의 선택과 K 관리도의 구성을 논의하고 실제 자료에 적용해 보았다.

준·고령자 직업훈련의 훈련생 및 훈련 특성이 재고용에 미치는 효과 (An Investigation on Employment Effect of Senior Job Training)

  • 이경희;이요행
    • 한국노년학
    • /
    • 제31권3호
    • /
    • pp.527-538
    • /
    • 2011
  • 본 연구는 고령자 직업훈련생의 훈련수료 후 재고용에 영향을 미치는 변인들, 그리고 재고용시 고용의 질에 영향을 주는 변인을 탐색하기 위하여 훈련특성 및 훈련생 특성을 28개 훈련기관과 576명의 훈련생을 대상으로 조사하였다. 훈련 수료 후 고용여부에 대한 개별 변인의 독립성 검증 결과, 훈련직종, 훈련기간, 훈련기관형태, 훈련경력, 소재지 및 훈련생의 학력에 따라 유의미한 차이를 보였다. 즉, 상담/강사, 환경/경비/청소 등의 직종이 전기/전자, 보건/복지/의료 등의 직종보다 더 높은 취업률을 보였고, 훈련기간이 짧은 직종이, 민간보다는 공공훈련기관이, 훈련경력이 짧은 훈련기관이, 지방보다는 수도권 소재 기관이, 전문대 이하 학력보다 대졸 이상의 학력을 가진 훈련생이 더 높은 취업확률을 보였다. 모든 변인을 투입한 로지스틱 회귀분석에서는 훈련 경력이 짧고, 시설·장비가 잘 갖추어진 공공훈련기관의 고용확률이 민간훈련기관이나 오랜 역사를 가진 공공 훈련기관에 비해 높았다. 재취업시 고용의 질에 대한 분석에서 훈련 이수 후 급여는 직업훈련을 받기 이전 급여수준에 비해 유의미하게 낮은 것으로 나타났다. 훈련수료 후 재취업시 남성보다는 여성이, 부양가족수가 적은 집단이, 실직기간이 짧은 집단이, 이전급여수준이 높았던 집단이 이전 직장에서의 임금보다 더 높은 임금을 받는 것으로 나타났다.

쇼핑 웹사이트 탐색 유형과 방문 패턴 분석 (Analysis of shopping website visit types and shopping pattern)

  • 최경빈;남기환
    • 지능정보연구
    • /
    • 제25권1호
    • /
    • pp.85-107
    • /
    • 2019
  • 온라인 소비자는 쇼핑 웹사이트에서 특정 제품군이나 브랜드에 속한 제품들을 둘러보고 구매를 진행할 수 있고, 혹은 단순히 넓은 범위의 탐색 반경을 보이며 여러 페이지들을 돌아보다 구매를 진행하지 않고 이탈할 수 있다. 이러한 온라인 소비자의 행동과 구매에 관련된 연구는 꾸준히 진행되어왔으며, 실무에서도 소비자들의 행동 데이터를 바탕으로 한 서비스 및 어플리케이션이 개발되고 있다. 최근에는 빅데이터 기술의 발달로 소비자 개인 단위의 맞춤화 전략 및 추천 시스템이 활용되고 있으며 사용자의 쇼핑 경험을 최적화하기 위한 시도가 진행되고 있다. 하지만 이와 같은 시도에도 온라인 소비자가 실제로 웹사이트를 방문해 제품 구매 단계까지 전환될 확률은 매우 낮은 실정이다. 이는 온라인 소비자들이 단지 제품 구매를 위해 웹사이트를 방문하는 것이 아니라 그들의 쇼핑 동기 및 목적에 따라 웹사이트를 다르게 활용하고 탐색하기 때문이다. 따라서 단지 구매가 진행되는 방문 외에도 다양한 방문 형태를 분석하는 것은 온라인 소비자들의 행동을 이해하는데 중요하다고 할 수 있다. 이러한 관점에서 본 연구에서는 온라인 소비자의 탐색 행동의 다양성과 복잡성을 설명하기 위해 실제 E-commerce 기업의 클릭스트림 데이터를 기반으로 세션 단위의 클러스터링 분석을 진행해 탐색 행동을 유형화하였다. 이를 통해 각 유형별로 상세 단위의 탐색 행동과 구매 여부가 차이가 있음을 확인하였다. 또한 소비자 개인이 여러 방문에 걸친 일련의 탐색 유형에 대한 패턴을 분석하기 위해 순차 패턴 마이닝 기법을 활용하였으며, 같은 기간 내에 제품 구매까지 완료한 소비자와 구매를 진행하지 않은 채 방문만 진행한 소비자들의 탐색패턴에 대한 차이를 확인할 수 있었다. 본 연구의 시사점은 대규모의 클릭스트림 데이터를 활용해 온라인 소비자의 탐색 유형을 분석하고 이에 대한 패턴을 분석해 구매 과정 상의 행동을 데이터 기반으로 설명하였다는 점에 있다. 또한 온라인 소매 기업은 다양한 형태의 탐색 유형에 맞는 마케팅 전략 및 추천을 통해 구매 전환 개선을 시도할 수 있으며, 소비자의 탐색 패턴의 변화를 통해 전략의 효과를 평가할 수 있을 것이다.

양자 유전알고리즘을 이용한 특징 선택 및 성능 분석 (Feature Selection and Performance Analysis using Quantum-inspired Genetic Algorithm)

  • 허기수;정현태;박아론;백성준
    • 스마트미디어저널
    • /
    • 제1권1호
    • /
    • pp.36-41
    • /
    • 2012
  • 특징 선택은 패턴 인식의 성능을 향상시키기 위해 부분집합을 구성하는 중요한 문제다. 특징 선택에는 순차 탐색 알고리즘으로부터 확률 기반의 유전 알고리즘까지 다양한 접근 방법이 적용 되었다. 본 연구에서는 특징 선택을 위해 양자 비트, 상태의 중첩 등 양자 컴퓨터 개념을 기반으로 하는 양자 기반 유전 알고리즘(QGA: Quantum-inspired Genetic Algorithm)을 적용하였다. QGA 성능은 전통적인 유전 알고리즘(CGA: Conventional Genetic Algorithm)을 적용한 특징 선택 방법과 분류율 및 평균 특징 개수의 비교를 통해 이루어졌으며, UCI 데이터를 이용한 실험 결과 QGA를 적용한 특징 선택 방법이 CGA를 적용한 경우에 비해 전반적으로 좋은 성능을 보임을 확인 할 수 있었다.

  • PDF

음향학적 파라미터의 변화 및 반복학습으로 작성한 언어모델에 대한 고찰 (Language Models constructed by Iterative Learning and Variation of the Acoustical Parameters)

  • 오세진;황철준;김범국;정호열;정현열
    • 한국음향학회:학술대회논문집
    • /
    • 한국음향학회 2000년도 하계학술발표대회 논문집 제19권 1호
    • /
    • pp.35-38
    • /
    • 2000
  • 본 연구에서는 연속음성인식 시스템의 성능 향상을 위한 기초 연구로서 시스템에 적합한 음향모델과 언어모델을 작성하고 항공편 예약 태스크를 대상으로 인식실험을 실시한 결과 그 유효성을 확인하였다. 이를 위하여 먼저 HMM의 출력확률분포의 mixture와 파라미터의 차원에 대한 정확한 분석을 통한 음향모델을 작성하였다. 또한 반복학습법으로 특정 태스크를 대상으로 N-gram 언어모델을 적용하여 인식 시스템에 적합한 모델을 작성하였다. 인식실험에 있어서는 3인의 화자가 발성한 200문장에 대해 파라미터 차원 및 mixture의 변화에 따른 음향모델과 반복학습에 의해 작성한 언어모델에 대해 multi-pass 탐색 알고리즘을 이용하였다. 그 결과, 25차원에 대한 mixture 수가 9인 음향모델과 10회 반복 학습한 언어모델을 이용한 경우 평균 $81.0\%$의 인식률을 얻었으며, 38차원에 대한 mixture 수가 9인 음향모델과 10회 반복 학습한 언어모델을 이용한 경우 평균 $90.2\%$의 인식률을 보여 인식률 제고를 위해서는 38차원에 대한 mixture 수가 9인 음향모델과 10회 반복학습으로 작성한 언어모델을 이용한 경우가 매우 효과적임을 알 수 있었다.

  • PDF