• Title/Summary/Keyword: 확률 절리망

Search Result 4, Processing Time 0.018 seconds

Simulation of Groundwater Flow in Fractured Porous Media using a Discrete Fracture Model (불연속 파쇄모델을 이용한 파쇄 매질에서의 지하수 유동 시뮬레이션)

  • Park, Yu-Chul;Lee, Kang-Kun
    • Economic and Environmental Geology
    • /
    • v.28 no.5
    • /
    • pp.503-512
    • /
    • 1995
  • Groundwater flow in fracture networks is simulated using a discrete fracture (DF) model which assume that groundwater flows only through the fracture network. This assumption is available if the permeability of rock matrix is very low. It is almost impossible to describe fracture networks perfectly, so a stochastic approach is used. The stochastic approach assumes that the characteristic parameters in fracture network have special distribution patterns. The stochastic model generates fracture networks with some characteristic parameters. The finite element method is used to compute fracture flows. One-dimensional line element is the element type of the finite elements. The simulation results are shown by dominant flow paths in the fracture network. The dominant flow path can be found from the simulated groundwater flow field. The model developed in this study provides the tool to estimate the influences of characteristic parameters on groundwater flow in fracture networks. The influences of some characteristic parameters on the frcture flow are estimated by the Monte Carlo simulation based on 30 realizations.

  • PDF

Development of Random fracture network for discontinuity plane (불연속면의 확률절리망 알고리즘의 개발)

  • Ko, Wang-Kyung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.11 no.2
    • /
    • pp.189-199
    • /
    • 2000
  • A major deficiency of laboratory testing of rock structure is that the structures are limited in size and therefore present a very small and highly selective sample of the rock mass from which were removed. In a typical engineering project, the samples tested in the laboratory represent only a very small fraction of one percent of the volume of the rock mass. In this paper, we calculate the representative orientation of the resultant vector, the measure of the degree of clustering, the volume of rock mass, the trace length of discontinuity spacing under underlying distributions. And we generate the random fracture networks using real data. We propose the calculating the trace length.

  • PDF

Effect of Joint Aperture Variation on Hydraulic Behavior of the 2-D DFN System (절리간극의 변화가 이차원 DFN 시스템의 수리적 특성에 미치는 영향)

  • Han, Jisu;Um, Jeong-Gi
    • Tunnel and Underground Space
    • /
    • v.26 no.4
    • /
    • pp.283-292
    • /
    • 2016
  • A computer program code was developed to estimate hydraulic behavior of the 2-D connected pipe network system, and implemented to evaluate the effect of joint aperture on hydraulic parameters of fractured rock masses through numerical experiments. A total of 216 stochastic 2-D DFN(discrete fracture network) blocks of $20m{\times}20m$ were prepared using two joint sets with fixed input parameters of joint orientation, frequency and size distribution. Two different cases of joint aperture variation are considered in this study. The hydraulic parameters were estimated for generated 2-D DFN blocks. The hydraulic anisotropy and the chance for equivalent continuum behavior of the DFN system were found to depend on the variability of joint aperture.

Numerical Analysis of Groundwater Flow through Fractured Rock Mass by Tunneling in a Mountainous Area (산악 지역 내 터널 굴착 시 단열 암반 내 지하수 유동 분석)

  • Kim, Hyoung-Soo;Lee, Ju-Hyun;Ahn, Ju-Hee;Ahn, Gyu-Cheon;Yoon, Woon-Sang
    • Tunnel and Underground Space
    • /
    • v.16 no.4 s.63
    • /
    • pp.281-287
    • /
    • 2006
  • Intake of groundwater by tunneling in a mountainous area mostly results from groundwater flow through fractured parts of total rock mass. For reasonable analysis of this phenomenon the representative joint groups 1, 2, and 3 have been selected by previous investigations, geological/geophysical field tests and boring works. Three dimensional fractures were generated by the FracMan and MAFIC which is a three dimensional finite element model has been used to analyse a groundwater flow through fractured media. Monte Carlo simulation was applied to reduce the uncertainty of this study. The numerical results showed that the average and deviation of amounts of groundwater intaked into tunnel per unit length were $5.40{\times}10^{-1}$ and $3.04{\times}10^{-1}m^3/min/km$. It is concluded that tunnel would be stable on impact of groundwater environment by tunneling because of the lower value than $2.00{\sim}3.00m^3/min/km$ as previous and present standard on the application of tunnel construction.